643 resultados para Reveal
Resumo:
Australian Media Law details and explains the complex case law, legislation and regulations governing media practice in areas as diverse as journalism, advertising, multimedia and broadcasting. It examines the issues affecting traditional forms of media such as television, radio, film and newspapers as well as for recent forms such as the internet, online forums and digital technology, in a clear and accessible format. New additions to the fifth edition include: - the implications of new anti-terrorism legislation for journalists; - developments in privacy law, including Law Reform recommendations for a statutory cause of action to protect personal privacy in Australia and the expanding privacy jurisprudence in the United Kingdom and New Zealand; - liability for defamation of internet search engines and service providers; - the High Court decision in Roadshow v iiNet and the position of internet service providers in relation to copyright infringement via their services; - new suppression order regimes; - statutory reforms providing journalists with a rebuttable presumption of non-disclosure when called upon to reveal their sources in a court of law; - recent developments regarding whether journalists can use electronic devices to collect and disseminate information about court proceedings; - contempt committed by jurors via social media; and an examination of recent decisions on defamation, confidentiality, vilification, copyright and contempt.
Resumo:
Gene expression is arguably the most important indicator of biological function. Thus identifying differentially expressed genes is one of the main aims of high throughout studies that use microarray and RNAseq platforms to study deregulated cellular pathways. There are many tools for analysing differentia gene expression from transciptomic datasets. The major challenge of this topic is to estimate gene expression variance due to the high amount of ‘background noise’ that is generated from biological equipment and the lack of biological replicates. Bayesian inference has been widely used in the bioinformatics field. In this work, we reveal that the prior knowledge employed in the Bayesian framework also helps to improve the accuracy of differential gene expression analysis when using a small number of replicates. We have developed a differential analysis tool that uses Bayesian estimation of the variance of gene expression for use with small numbers of biological replicates. Our method is more consistent when compared to the widely used cyber-t tool that successfully introduced the Bayesian framework to differential analysis. We also provide a user-friendly web based Graphic User Interface for biologists to use with microarray and RNAseq data. Bayesian inference can compensate for the instability of variance caused when using a small number of biological replicates by using pseudo replicates as prior knowledge. We also show that our new strategy to select pseudo replicates will improve the performance of the analysis. - See more at: http://www.eurekaselect.com/node/138761/article#sthash.VeK9xl5k.dpuf
Resumo:
This research aimed to inform the design of effective information literacy lessons in higher education. Phenomenography, a research approach designed to study human experience, was used to explore the experiences of a teacher and undergraduate students using information to learn about language and gender issues. The findings show that the way learners use information influences content-focused learning outcomes, and reveal an instructional pattern for enabling students to use information while becoming aware of the topic they are investigating. Based on the findings, a design model is offered in which learning outcomes are realized through targeted information literacy activities.
Resumo:
Model systems are critical to our understanding of self-assembly processes. As such, we have studied the surface self-assembly of a small and simple molecule, indole-2-carboxylic acid (I2CA). We combine density functional theory gas-phase (DFT) calculations with scanning tunneling microscopy to reveal details of I2CA assembly in two different solvents at the solution/solid interface, and on Au(111) in ultrahigh vacuum (UHV). In UHV and at the trichlorobenzene/highly oriented pyrolytic graphite (HOPG) interface, I2CA forms epitaxial lamellar structures based on cyclic OH⋯O carboxylic dimers. The structure formed at the heptanoic acid/HOPG interface is different and can be interpreted in a model where heptanoic acid molecules co-adsorb on the substrate with the I2CA, forming a bicomponent commensurate unit cell. DFT calculations of dimer energetics elucidate the basic building blocks of these structures, whereas calculations of periodic two-dimensional assemblies reveal the epitaxial effects introduced by the different substrates.
Resumo:
We describe a surprising cooperative adsorption process observed by scanning tunneling microscopy (STM) at the liquid−solid interface. The process involves the association of a threefold hydrogen-bonding unit, trimesic acid (TMA), with straight-chain aliphatic alcohols of varying length (from C7 to C30), which coadsorb on highly oriented pyrolytic graphite (HOPG) to form linear patterns. In certain cases, the known TMA “flower pattern” can coexist temporarily with the linear TMA−alcohol patterns, but it eventually disappears. Time-lapsed STM imaging shows that the evolution of the flower pattern is a classical ripening phenomenon. The periodicity of the linear TMA−alcohol patterns can be modulated by choosing alcohols with appropriate chain lengths, and the precise structure of the patterns depends on the parity of the carbon count in the alkyl chain. Interactions that lead to this odd−even effect are analyzed in detail. The molecular components of the patterns are achiral, yet their association by hydrogen bonding leads to the formation of enantiomeric domains on the surface. The interrelation of these domains and the observation of superperiodic structures (moiré patterns) are rationalized by considering interactions with the underlying graphite surface and within the two-dimensional crystal of the adsorbed molecules. Comparison of the observed two-dimensional structures with the three-dimensional crystal structures of TMA−alcohol complexes determined by X-ray crystallography helps reveal the mechanism of molecular association in these two-component systems.
Resumo:
The imaging and characterization of single-molecule reaction events is essential to both extending our basic understanding of chemistry and applying this understanding to challenges at the frontiers of technology, for example, in nanoelectronics. Specifically, understanding the behavior of individual molecules can elucidate processes critical to the controlled synthesis of materials for applications in multiple nanoscale technologies. Here, we report the synthesis of an important semiconducting organic molecule through an unprecedented reaction observed with submolecular resolution by scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. Our images reveal a sulfur abstraction and cyclization reaction that converts tetrathienoanthracene precursors into pentacene on the Ni(111) surface. The identity of the final reaction product was confirmed by time-of-flight secondary ion mass spectrometry (TOF-SIMS). This reaction has no known literature analogue, and highlights the power of local-probe techniques for exploring new chemical pathways.
Resumo:
We report a new method for the growth of reduced graphene oxide (rGO) on the 316L alloy of stainless steel (SS) and its relevance for biomedical applications. We demonstrate that electrochemical etching increases the concentration of metallic species on the surface and enables the growth of rGO. This result is supported through a combination of Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), density functional theory (DFT) calculations and static water contact angle measurements. Raman spectroscopy identifies the G and D bands for oxidized species of graphene at 1595 cm(-1) and 1350 cm(-1), respectively, and gives an ID/IG ratio of 1.2, indicating a moderate degree of oxidation. XPS shows -OH and -COOH groups in the rGO stoichiometry and static contact angle measurements confirm the wettability of rGO. SEM and AFM measurements were performed on different substrates before and after coronene treatment to confirm rGO growth. Cell viability studies reveal that these rGO coatings do not have toxic effects on mammalian cells, making this material suitable for biomedical and biotechnological applications.
Resumo:
Consumer electronics increasingly find their way into cars and are often portrayed as unwanted distractions. As part of our endeavour to capitalise on these technologies as safety tools rather than safety threats, we suggest to use smartphones, head-up displays, vehicle interfaces, and other digital gadgets: a) as readily available and lightweight sensing devices, and b) as platforms for engaging interventions that provide safe stimuli in real- time while driving. In our effort to make safe driving behaviours more fun, we explore ways to apply gamification to driving. In this paper, we illustrate the need for a careful balance between fun and safety and reveal ethical issues that arise when introducing new technology interventions into this complex and safety- critical design space.
Resumo:
The Government of Bangladesh is planning to develop and implement Bus Rapid Transit (BRT) in Dhaka city. This paper presents a stated choice survey conducted to understand workers’ attitudes toward BRT in Dhaka. The survey data are analysed using a multinomial logit (MNL) model to scrutinize social and economic factors’ impact on participant’s mode choices. Analysis results reveal that males, workers of higher age, education qualification, and income have a greater tendency towards choosing BRT.
Resumo:
Rapid and unplanned growth of Kathmandu Valley towns over the past decades has resulted in the haphazard development of new neighbourhoods with significant consequences on their public space. This paper examines the development of public space in the valley’s new neighbourhoods in the context of the current urban growth. A case study approach of three new neighbourhoods was developed to examine the provision of public space with data collected from site observations, interviews with neighbourhood residents and other secondary sources. The cases studies consist of both planned and unplanned new neighbourhoods. Findings reveal a severe loss of public space in the unplanned new neighbourhoods. In planned new neighbourhoods, the provision of public space remains poor in terms of physical features, and thus, does not support community activities and needs. Several factors, which are an outcome of the lack of proper urban growth initiatives and control measures, such as an overall drawback in the formation of new neighbourhoods, the poor capacity of local community-based organisations and the encroachment of public land are responsible for the present development of neighbourhood public space. The problems with ongoing management of public spaces are a significant issue in both unplanned and planned new neighbourhoods.
Resumo:
The Macroscopic Fundamental Diagram (MFD) relates space-mean density and flow. Since the MFD represents the area-wide network traffic performance, studies on perimeter control strategies and network-wide traffic state estimation utilising the MFD concept have been reported. Most previous works have utilised data from fixed sensors, such as inductive loops, to estimate the MFD, which can cause biased estimation in urban networks due to queue spillovers at intersections. To overcome the limitation, recent literature reports the use of trajectory data obtained from probe vehicles. However, these studies have been conducted using simulated datasets; limited works have discussed the limitations of real datasets and their impact on the variable estimation. This study compares two methods for estimating traffic state variables of signalised arterial sections: a method based on cumulative vehicle counts (CUPRITE), and one based on vehicles’ trajectory from taxi Global Positioning System (GPS) log. The comparisons reveal some characteristics of taxi trajectory data available in Brisbane, Australia. The current trajectory data have limitations in quantity (i.e., the penetration rate), due to which the traffic state variables tend to be underestimated. Nevertheless, the trajectory-based method successfully captures the features of traffic states, which suggests that the trajectories from taxis can be a good estimator for the network-wide traffic states.
Resumo:
Precarious Creativity examines the seismic changes confronting media workers in an age of globalization and corporate conglomeration. This pathbreaking anthology peeks behind the hype and supposed glamor of screen media industries to reveal the intensifying pressures and challenges confronting actors, editors, electricians, and others. The authors take on pressing conceptual and methodological issues while also providing insightful case studies of workplace dynamics regarding creativity, collaboration, exploitation, and cultural difference. Furthermore, it examines working conditions and organizing efforts on all six continents, offering broad-ranging and comprehensive analysis of contemporary screen media labor in such places as Lagos, Prague, Hollywood, and Hyderabad. The collection also examines labor conditions across a range of job categories that includes, for example, visual effects, production services, and adult entertainment. With contributions from such leading scholars as John Caldwell, Vicki Mayer, Herman Gray, and Tejaswini Ganti, Precarious Creativity offers timely critiques of media globalization while also intervening in broader debates about labor, creativity, and precarity.
Resumo:
Students with disruptive behaviour in the Australian state of New South Wales are increasingly being educated in separate “behaviour” schools. There is however surprisingly little research on how students view these settings, or indeed the mainstream schools from which they were excluded. To better understand excluded students’ current and past educational experiences, we interviewed 33 boys, aged between 9 and 16 years of age, who were enrolled in separate special schools for students with disruptive behaviour. Analyses reveal that the majority of participants began disliking school in the early years due to difficulties with school work and teacher conflict. Interestingly, while most indicated that they preferred the behaviour school, more than half still wanted to return to their old school. It is therefore clear that separate special educational settings are not a solution to disruptive behaviour in mainstream schools. Whilst these settings do fulfil a function for some students, the preferences of the majority of boys suggest that “mainstream” school reform is of first order importance.
Resumo:
Selective oxidation of aliphatic alcohols under mild and base-free conditions is a challenging process for organic synthesis. Herein, we report a one-pot process for the direct oxidative esterification of aliphatic alcohols that is significantly enhanced by visible-light irradiation at ambient temperatures. The new methodology uses heterogenerous photocatalysts of gold–palladium alloy nanoparticles on a phosphate-modified hydrotalcite support and molecular oxygen as a benign oxidant. The alloy photocatalysts can absorb incident light, and the light-excited metal electrons on the surface of metal nanoparticles can activate the adsorbed reactant molecules. Tuning the light intensity and wavelength of the irradiation can remarkably change the reaction activity. Shorter wavelength light (<550 nm) drives the reaction more efficiently than light of longer wavelength (e.g., 620 nm), especially at low temperatures. The phosphate-exchanged hydrotalcite support provides sufficient basicity (and buffer) for the catalytic reactions; thus, the addition of base is not required. The photocatalysts are efficient and readily recyclable. The findings reveal the first example of using “green” oxidants and light energy to drive direct oxidative esterification of aliphatic alcohols under base-free, mild conditions.
Resumo:
Multiphenotype genome-wide association studies (GWAS) may reveal pleiotropic genes, which would remain undetected using single phenotype analyses. Analysis of large pedigrees offers the added advantage of more accurately assessing trait heritability, which can help prioritise genetically influenced phenotypes for GWAS analysis. In this study we performed a principal component analysis (PCA), heritability (h2) estimation and pedigree-based GWAS of 37 cardiovascular disease -related phenotypes in 330 related individuals forming a large pedigree from the Norfolk Island genetic isolate. PCA revealed 13 components explaining >75% of the total variance. Nine components yielded statistically significant h2 values ranging from 0.22 to 0.54 (P<0.05). The most heritable component was loaded with 7 phenotypic measures reflecting metabolic and renal dysfunction. A GWAS of this composite phenotype revealed statistically significant associations for 3 adjacent SNPs on chromosome 1p22.2 (P<1x10-8). These SNPs form a 42kb haplotype block and explain 11% of the genetic variance for this renal function phenotype. Replication analysis of the tagging SNP (rs1396315) in an independent US cohort supports the association (P = 0.000011). Blood transcript analysis showed 35 genes were associated with rs1396315 (P<0.05). Gene set enrichment analysis of these genes revealed the most enriched pathway was purine metabolism (P = 0.0015). Overall, our findings provide convincing evidence for a major pleiotropic effect locus on chromosome 1p22.2 influencing risk of renal dysfunction via purine metabolism pathways in the Norfolk Island population. Further studies are now warranted to interrogate the functional relevance of this locus in terms of renal pathology and cardiovascular disease risk.