629 resultados para Need for Uniqueness Scale
Resumo:
The sugarcane transport system plays a critical role in the overall performance of Australia’s sugarcane industry. An inefficient sugarcane transport system interrupts the raw sugarcane harvesting process, delays the delivery of sugarcane to the mill, deteriorates the sugar quality, increases the usage of empty bins, and leads to the additional sugarcane production costs. Due to these negative effects, there is an urgent need for an efficient sugarcane transport schedule that should be developed by the rail schedulers. In this study, a multi-objective model using mixed integer programming (MIP) is developed to produce an industry-oriented scheduling optimiser for sugarcane rail transport system. The exact MIP solver (IBM ILOG-CPLEX) is applied to minimise the makespan and the total operating time as multi-objective functions. Moreover, the so-called Siding neighbourhood search (SNS) algorithm is developed and integrated with Sidings Satisfaction Priorities (SSP) and Rail Conflict Elimination (RCE) algorithms to solve the problem in a more efficient way. In implementation, the sugarcane transport system of Kalamia Sugar Mill that is a coastal locality about 1050 km northwest of Brisbane city is investigated as a real case study. Computational experiments indicate that high-quality solutions are obtainable in industry-scale applications.
Resumo:
Purification of drinking water is routinely achieved by use of conventional coagulants and disinfection procedures. However, there are instances such as flood events when the level of turbidity reaches extreme levels while NOM may be an issue throughout the year. Consequently, there is a need to develop technologies which can effectively treat water of high turbidity during flood events and natural organic matter (NOM) content year round. It was our hypothesis that pebble matrix filtration potentially offered a relatively cheap, simple and reliable means to clarify such challenging water samples. Therefore, a laboratory scale pebble matrix filter (PMF) column was used to evaluate the turbidity and natural organic matter (NOM) pre-treatment performance in relation to 2013 Brisbane River flood water. Since the high turbidity was only a seasonal and short term problem, the general applicability of pebble matrix filters for NOM removal was also investigated. A 1.0 m deep bed of pebbles (the matrix) partly in-filled with either sand or crushed glass was tested, upon which was situated a layer of granular activated carbon (GAC). Turbidity was measured as a surrogate for suspended solids (SS), whereas, total organic carbon (TOC) and UV Absorbance at 254 nm were measured as surrogate parameters for NOM. Experiments using natural flood water showed that without the addition of any chemical coagulants, PMF columns achieved at least 50% turbidity reduction when the source water contained moderate hardness levels. For harder water samples, above 85% turbidity reduction was obtained. The ability to remove 50% turbidity without chemical coagulants may represent significant cost savings to water treatment plants and added environmental benefits accrue due to less sludge formation. A TOC reduction of 35-47% and UV-254 nm reduction of 24-38% was also observed. In addition to turbidity removal during flood periods, the ability to remove NOM using the pebble matrix filter throughout the year may have the benefit of reducing disinfection by-products (DBP) formation potential and coagulant demand at water treatment plants. Final head losses were remarkably low, reaching only 11 cm at a filtration velocity of 0.70 m/h.
Resumo:
Worldwide population growth and economic agglomeration is driving increasing urban density within larger metropolitan conurbations. Population growth and housing diversity and affordability issues in Queensland have seen an increasing demand for more diverse and higher density development. Under Queensland’s flexible planning regulatory provisions, a level of ‘medium’ to ‘high density’ is being achieved by a focus on fine-grained urban design, low scale development, lot diversity, and delivery of single dwelling products. This for Queensland (and Australia) has been an unprecedented innovation in urban and dwelling design. Dwellings are being delivered on lots with zero regulatory minimum sizes providing for a range of new products including ‘apartments on the ground’. This paper reviews recent and nascent demonstrations of EDQ’s fine-grained urbanism principles, identifiable with historical ‘vernacular suburbanism’. The paper introduces and defines a concept of a ‘natural density’ linking human scale built form with walkability. The paper challenges the notion that (sub)urban development, outside major city centres, needs to be of a higher scale to achieve density and diversity aspirations. ‘Natural density’ provides a means of achieving the increasing demand for more diverse and higher density development.
Resumo:
- Background Childcare providers are often “first responders” for suspected child abuse, and how they understand the concept of “reasonable suspicion” will influence their decisions regarding which warning signs warrant reporting. - Objective The purpose of this study was to investigate how childcare providers interpret the threshold for reporting suspected abuse, and to consider the implications of these findings for professional training and development. - Method A convenience sample of 355 childcare providers completed the Reasonable Suspicion of Child Abuse survey to quantify what likelihood of child abuse constitutes “reasonable suspicion.” Responses were examined for internal consistency, evidence of a group standard, and associations with professional and personal demographics. - Results On a Rank Order Scale, responses for what constitutes “reasonable suspicion” ranged from requiring that abuse be “the” most likely cause (8 %) of an injury, to the second most likely (9 %), third (18 %), fourth (18 %), to even the seventh (8 %) or eighth (5 %) most likely cause of an injury. On a numerical probability scale, 21 % of respondents indicated that “abuse” would need to be ≥83 % likely before reasonable suspicion existed; 40 % stated that a likelihood between 53–82 % was needed; 27 % identified the necessary likelihood between 33–52 %; and 12 % set a threshold between 1–32 %. - Conclusions The present finding that no consensus exists for interpreting “reasonable suspicion” suggests that a broadly accepted interpretive framework is needed in order to help prepare childcare providers to know when to report suspected abuse.
Resumo:
The problem of unsupervised anomaly detection arises in a wide variety of practical applications. While one-class support vector machines have demonstrated their effectiveness as an anomaly detection technique, their ability to model large datasets is limited due to their memory and time complexity for training. To address this issue for supervised learning of kernel machines, there has been growing interest in random projection methods as an alternative to the computationally expensive problems of kernel matrix construction and sup-port vector optimisation. In this paper we leverage the theory of nonlinear random projections and propose the Randomised One-class SVM (R1SVM), which is an efficient and scalable anomaly detection technique that can be trained on large-scale datasets. Our empirical analysis on several real-life and synthetic datasets shows that our randomised 1SVM algorithm achieves comparable or better accuracy to deep auto encoder and traditional kernelised approaches for anomaly detection, while being approximately 100 times faster in training and testing.
Resumo:
Many conventional statistical machine learning al- gorithms generalise poorly if distribution bias ex- ists in the datasets. For example, distribution bias arises in the context of domain generalisation, where knowledge acquired from multiple source domains need to be used in a previously unseen target domains. We propose Elliptical Summary Randomisation (ESRand), an efficient domain generalisation approach that comprises of a randomised kernel and elliptical data summarisation. ESRand learns a domain interdependent projection to a la- tent subspace that minimises the existing biases to the data while maintaining the functional relationship between domains. In the latent subspace, ellipsoidal summaries replace the samples to enhance the generalisation by further removing bias and noise in the data. Moreover, the summarisation enables large-scale data processing by significantly reducing the size of the data. Through comprehensive analysis, we show that our subspace-based approach outperforms state-of-the-art results on several activity recognition benchmark datasets, while keeping the computational complexity significantly low.
Resumo:
- Background Expressed emotion (EE) captures the affective quality of the relationship between family caregivers and their care recipients and is known to increase the risk of poor health outcomes for caregiving dyads. Little is known about expressed emotion in the context of caregiving for persons with dementia, especially in non-Western cultures. The Family Attitude Scale (FAS) is a psychometrically sound self-reporting measure for EE. Its use in the examination of caregiving for patients with dementia has not yet been explored. - Objectives This study was performed to examine the psychometric properties of the Chinese version of the FAS (FAS-C) in Chinese caregivers of relatives with dementia, and its validity in predicting severe depressive symptoms among the caregivers. - Methods The FAS was translated into Chinese using Brislin's model. Two expert panels evaluated the semantic equivalence and content validity of this Chinese version (FAS-C), respectively. A total of 123 Chinese primary caregivers of relatives with dementia were recruited from three elderly community care centers in Hong Kong. The FAS-C was administered with the Chinese versions of the 5-item Mental Health Inventory (MHI-5), the Zarit Burden Interview (ZBI) and the Revised Memory and Behavioral Problem Checklist (RMBPC). - Results The FAS-C had excellent semantic equivalence with the original version and a content validity index of 0.92. Exploratory factor analysis identified a three-factor structure for the FAS-C (hostile acts, criticism and distancing). Cronbach's alpha of the FAS-C was 0.92. Pearson's correlation indicated that there were significant associations between a higher score on the FAS-C and greater caregiver burden (r = 0.66, p < 0.001), poorer mental health of the caregivers (r = −0.65, p < 0.001) and a higher level of dementia-related symptoms (frequency of symptoms: r = 0.45, p < 0.001; symptom disturbance: r = 0.51, p < 0.001), which serves to suggest its construct validity. For detecting severe depressive symptoms of the family caregivers, the receiving operating characteristics (ROC) curve had an area under curve of 0.78 (95% confidence interval (CI) = 0.69–0.87, p < 0.0001). The optimal cut-off score was >47 with a sensitivity of 0.720 (95% CI = 0.506–0.879) and specificity of 0.742 (95% CI = 0.643–0.826). - Conclusions The FAS-C is a reliable and valid measure to assess the affective quality of the relationship between Chinese caregivers and their relatives with dementia. It also has acceptable predictability in identifying family caregivers with severe depressive symptoms.
Resumo:
Scales provide optical disguise, low water drag and mechanical protection to fish, enabling them to survive catastrophic environmental disasters, predators and microorganisms. The unique structures and stacking sequences of fish scales inspired the fabrication of artificial nanostructures with salient optical, interfacial and mechanical properties. Herein, we describe fish-scale bio-inspired multifunctional ZnO nanostructures that have similar morphology and structure to the cycloid scales of the Asian Arowana. These nanostructured coatings feature tunable light refraction and reflection, modulated surface wettability and damage-tolerant mechanical properties. The salient properties of these multifunctional nanostructures are promising for applications in: - (i) optical coatings, sensing or lens arrays for use in reflective displays, packing, advertising and solar energy harvesting; - (ii) self-cleaning surfaces, including anti-smudge, anti-fouling and anti-fogging, and self-sterilizing surfaces, and; - (iii) mechanical/chemical barrier coatings. This study provides a low-cost and large-scale production method for the facile fabrication of these bio-inspired nanostructures and provides new insights for the development of novel functional materials for use in 'smart' structures and applications.
Resumo:
Yttrium silicates (Y-Si-O oxides), including Y2Si2O7, Y2SiO5, and Y4·67(SiO4)3O apatite, have attracted wide attentions from material scientists and engineers, because of their extensive polymorphisms and important roles as grain boundary phases in improving the high-temperature mechanical/thermal properties of Si3N4and SiC ceramics. Recent interest in these materials has been renewed by their potential applications as high-temperature structural ceramics, oxidation protective coatings, and environmental barrier coatings (EBCs). The salient properties of Y-Si-O oxides are strongly related to their unique chemical bonds and microstructure features. An in-depth understanding on the synthesis - multi-scale structure-property relationships of the Y-Si-O oxides will shine a light on their performance and potential applications. In this review, recent progress of the synthesis, multi-scale structures, and properties of the Y-Si-O oxides are summarised. First, various methods for the synthesis of Y-Si-O ceramics in the forms of powders, bulks, and thin films/coatings are reviewed. Then, the crystal structures, chemical bonds, and atomic microstructures of the polymorphs in the Y-Si-O system are summarised. The third section focuses on the properties of Y-Si-O oxides, involving the mechanical, thermal, dielectric, and tribological properties, their environmental stability, and their structure-property relationships. The outlook for potential applications of Y-Si-O oxides is also highlighted.
Resumo:
Solving large-scale all-to-all comparison problems using distributed computing is increasingly significant for various applications. Previous efforts to implement distributed all-to-all comparison frameworks have treated the two phases of data distribution and comparison task scheduling separately. This leads to high storage demands as well as poor data locality for the comparison tasks, thus creating a need to redistribute the data at runtime. Furthermore, most previous methods have been developed for homogeneous computing environments, so their overall performance is degraded even further when they are used in heterogeneous distributed systems. To tackle these challenges, this paper presents a data-aware task scheduling approach for solving all-to-all comparison problems in heterogeneous distributed systems. The approach formulates the requirements for data distribution and comparison task scheduling simultaneously as a constrained optimization problem. Then, metaheuristic data pre-scheduling and dynamic task scheduling strategies are developed along with an algorithmic implementation to solve the problem. The approach provides perfect data locality for all comparison tasks, avoiding rearrangement of data at runtime. It achieves load balancing among heterogeneous computing nodes, thus enhancing the overall computation time. It also reduces data storage requirements across the network. The effectiveness of the approach is demonstrated through experimental studies.
Resumo:
The use of social networking has exploded, with millions of people using various web- and mobile-based services around the world. This increase in social networking use has led to user anxiety related to privacy and the unauthorised exposure of personal information. Large-scale sharing in virtual spaces means that researchers, designers and developers now need to re-consider the issues and challenges of maintaining privacy when using social networking services. This paper provides a comprehensive survey of the current state-of-the-art privacy in social networks for both desktop and mobile uses and devices from various architectural vantage points. The survey will assist researchers and analysts in academia and industry to move towards mitigating many of the privacy issues in social networks.
Resumo:
Twitter’s hashtag functionality is now used for a very wide variety of purposes, from covering crises and other breaking news events through gathering an instant community around shared media texts (such as sporting events and TV broadcasts) to signalling emotive states from amusement to despair. These divergent uses of the hashtag are increasingly recognised in the literature, with attention paid especially to the ability for hashtags to facilitate the creation of ad hoc or hashtag publics. A more comprehensive understanding of these different uses of hashtags has yet to be developed, however. Previous research has explored the potential for a systematic analysis of the quantitative metrics that could be generated from processing a series of hashtag datasets. Such research found, for example, that crisis-related hashtags exhibited a significantly larger incidence of retweets and tweets containing URLs than hashtags relating to televised events, and on this basis hypothesised that the information-seeking and -sharing behaviours of Twitter users in such different contexts were substantially divergent. This article updates such study and their methodology by examining the communicative metrics of a considerably larger and more diverse number of hashtag datasets, compiled over the past five years. This provides an opportunity both to confirm earlier findings, as well as to explore whether hashtag use practices may have shifted subsequently as Twitter’s userbase has developed further; it also enables the identification of further hashtag types beyond the “crisis” and “mainstream media event” types outlined to date. The article also explores the presence of such patterns beyond recognised hashtags, by incorporating an analysis of a number of keyword-based datasets. This large-scale, comparative approach contributes towards the establishment of a more comprehensive typology of hashtags and their publics, and the metrics it describes will also be able to be used to classify new hashtags emerging in the future. In turn, this may enable researchers to develop systems for automatically distinguishing newly trending topics into a number of event types, which may be useful for example for the automatic detection of acute crises and other breaking news events.
Resumo:
The widespread deployment of commercial-scale cellulosic ethanol currently hinges on developing and evaluating scalable processes whilst broadening feedstock options. This study investigates whole Eucalyptus grandis trees as a potential feedstock and demonstrates dilute acid pre-treatment (with steam explosion) followed by pre-saccharification simultaneous saccharification fermentation process (PSSF) as a suitable, scalable strategy for the production of bioethanol. Biomass was pre-treated in dilute H2SO4 at laboratory scale (0.1 kg) and pilot scale (10 kg) to evaluate the effect of combined severity factor (CSF) on pre-treatment effectiveness. Subsequently, pilot-scale pre-treated residues (15 wt.%) were converted to ethanol in a PSSF process at 2 L and 300 L scales. Good polynomial correlations (n = 2) of CSF with hemicellulose removal and glucan digestibility with a minimum R2 of 0.91 were recorded. The laboratory-scale 72 h glucan digestibility and glucose yield was 68.0% and 51.3%, respectively, from biomass pre-treated at 190 °C /15 min/ 4.8 wt.% H2SO4. Pilot-scale pre-treatment (180 °C/ 15 min/2.4 wt.% H2SO4 followed by steam explosion) delivered higher glucan digestibility (71.8%) and glucose yield (63.6%). However, the ethanol yields using PSSF were calculated at 82.5 and 113 kg/ton of dry biomass for the pilot and the laboratory scales, respectively. © 2016 Society of Chemical Industry and John Wiley & Sons, Ltd
Resumo:
This paper considers the dynamic modelling and motion control of a Surface Effect Ship (SES) for safer transfer of personnel and equipment from vessel to-and-from an offshore wind-turbine. The control system designed is referred to as Boarding Control System (BCS). The performance of this system is investigated for a specific wind-farm service vessel—The Wave Craft. On a SES, the pressurized air cushion supports the majority of the weight of the vessel. The control problem considered relates to the actuation of the pressure such that wave-induced vessel motions are minimized. Results are given through simulation, model- and full-scale experimental testing.