688 resultados para Jennifer Sibert
Resumo:
We describe a surprising cooperative adsorption process observed by scanning tunneling microscopy (STM) at the liquid−solid interface. The process involves the association of a threefold hydrogen-bonding unit, trimesic acid (TMA), with straight-chain aliphatic alcohols of varying length (from C7 to C30), which coadsorb on highly oriented pyrolytic graphite (HOPG) to form linear patterns. In certain cases, the known TMA “flower pattern” can coexist temporarily with the linear TMA−alcohol patterns, but it eventually disappears. Time-lapsed STM imaging shows that the evolution of the flower pattern is a classical ripening phenomenon. The periodicity of the linear TMA−alcohol patterns can be modulated by choosing alcohols with appropriate chain lengths, and the precise structure of the patterns depends on the parity of the carbon count in the alkyl chain. Interactions that lead to this odd−even effect are analyzed in detail. The molecular components of the patterns are achiral, yet their association by hydrogen bonding leads to the formation of enantiomeric domains on the surface. The interrelation of these domains and the observation of superperiodic structures (moiré patterns) are rationalized by considering interactions with the underlying graphite surface and within the two-dimensional crystal of the adsorbed molecules. Comparison of the observed two-dimensional structures with the three-dimensional crystal structures of TMA−alcohol complexes determined by X-ray crystallography helps reveal the mechanism of molecular association in these two-component systems.
Resumo:
Scanning tunneling microscopy (STM) of monolayers comprising oligothiophene and fullerene molecular semiconductors reveals details of their molecular-scale phase separation and ordering with potential implications for the design of organic electronic devices, in particular future bulk heterojunction solar cells. Prochiral terthienobenzenetricarboxylic acid (TTBTA) self-assembles at the solution/graphite interface into either a porous chicken wire network linked by dimeric hydrogen bonding associations of COOH groups (R22(8)) or a close-packed network linked in a novel hexameric hydrogen bonding motif (R66(24)). Analysis of high-resolution STM images shows that the chicken wire phase is racemically mixed, whereas the close-packed phase is enantiomerically pure. The cavities of the chicken wire structure can efficiently host C60 molecules, which form ordered domains with either one, two, or three fullerenes per cavity. The observed monodisperse filling and long-range co-alignment of fullerenes is described in terms of a combination of an electrostatic effect and the commensurability between the graphite and molecular network, which leads to differentiation of otherwise identical adsorption sites in the pores.
Resumo:
The results of a high-resolution ambient STM study of ‘sulflower’ (octathio[8]circulene) and ‘selenosulflower’ (sym-tetraselena-tetrathio[8]circulene) molecules, immobilized in a hydrogen-bonded matrix of trimesic acid (TMA) at the solid–liquid interface, are compared with the STM and X-ray structure of separate host and guest 2D and 3D crystals, respectively.
Resumo:
The scanning tunneling microscope (STM) has evolved continually since its invention, as scientists have expanded its use to encompass atomic-scale manipulation, momentum-resolved electronic characterization, localized chemical reactions (bond breaking and bond making) in adsorbed molecules, and even chain reactions at surfaces. This burgeoning field has recently expanded to include the use of the STM to inject hot electrons into substrate surface states; the injected electrons can travel laterally and induce changes in chemical structure in molecules located up to 100 nm from the STM tip. We describe several key demonstrations of this phenomenon, including one appearing in this issue of ACS Nano by Chen et al. Possible applications for this technique are also discussed, including characterizing the dispersion of molecule−substrate interface states and the controlled patterning of molecular overlayers.
Resumo:
Due to its remarkable mechanical and biological properties, there is considerable interest in understanding, and replicating, spider silk's stress-processing mechanisms and structure-function relationships. Here, we investigate the role of water in the nanoscale mechanics of the different regions in the spider silk fibre, and their relative contributions to stress processing. We propose that the inner core region, rich in spidroin II, retains water due to its inherent disorder, thereby providing a mechanism to dissipate energy as it breaks a sacrificial amide-water bond and gains order under strain, forming a stronger amide-amide bond. The spidroin I-rich outer core is more ordered under ambient conditions and is inherently stiffer and stronger, yet does not on its own provide high toughness. The markedly different interactions of the two proteins with water, and their distribution across the fibre, produce a stiffness differential and provide a balance between stiffness, strength and toughness under ambient conditions. Under wet conditions, this balance is destroyed as the stiff outer core material reverts to the behaviour of the inner core.
Resumo:
Weak interactions between bromine, sulphur, and hydrogen are shown to stabilize 2D supramolecular monolayers at the liquid–solid interface. Three different thiophene-based semiconducting organic molecules assemble into close-packed ultrathin ordered layers. A combination of scanning tunneling microscopy (STM) and density functional theory (DFT) elucidates the interactions within the monolayer. Electrostatic interactions are identified as the driving force for intermolecular Br⋯Br and Br⋯H bonding. We find that the S⋯S interactions of the 2D supramolecular layers correlate with the hole mobilities of thin film transistors of the same materials.
Resumo:
Investigations of the self-assembly of simple molecules at the solution/solid interface can provide useful insight into the general principles governing supramolecular chemistry in two dimensions. Here, we report on the assembly of 3,4′,5-biphenyl tricarboxylic acid (H3BHTC), a small hydrogen bonding unit related to the much-studied 1,3,5-benzenetricarboxylic acid (trimesic acid, TMA), which we investigate using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. STM images show that H3BHTC assembles by itself into an offset zigzag chain structure that maximizes the surface molecular density in favor of maximizing the number density of strong cyclic hydrogen bonds between the carboxylic groups. The offset geometry creates “sticky” pores that promote solvent coadsorption. Adding coronene to the molecular solution produces a transformation to a high-symmetry host–guest lattice stabilized by a dimeric/trimeric hydrogen bonding motif similar to the TMA flower structure. Finally, we show that the H3BHTC lattice firmly immobilizes the guest coronene molecules, allowing for high-resolution imaging of the coronene structure.
Resumo:
The imaging and characterization of single-molecule reaction events is essential to both extending our basic understanding of chemistry and applying this understanding to challenges at the frontiers of technology, for example, in nanoelectronics. Specifically, understanding the behavior of individual molecules can elucidate processes critical to the controlled synthesis of materials for applications in multiple nanoscale technologies. Here, we report the synthesis of an important semiconducting organic molecule through an unprecedented reaction observed with submolecular resolution by scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. Our images reveal a sulfur abstraction and cyclization reaction that converts tetrathienoanthracene precursors into pentacene on the Ni(111) surface. The identity of the final reaction product was confirmed by time-of-flight secondary ion mass spectrometry (TOF-SIMS). This reaction has no known literature analogue, and highlights the power of local-probe techniques for exploring new chemical pathways.
Resumo:
A biocompatible method for fabricating three-dimensional photonic crystals opens up unique opportunities for structurally coloured biodegradable materials, but also for implantable biosensing and targeted therapeutics on the microscale.
Resumo:
Crystallization of amorphous germanium (a-Ge) by laser or electron beam heating is a remarkably complex process that involves several distinct modes of crystal growth and the development of intricate microstructural patterns on the nanosecond to ten microsecond time scales. Here we use dynamic transmission electron microscopy (DTEM) to study the fast, complex crystallization dynamics with 10 nm spatial and 15 ns temporal resolution. We have obtained time-resolved real-space images of nanosecond laser-induced crystallization in a-Ge with unprecedentedly high spatial resolution. Direct visualization of the crystallization front allows for time-resolved snapshots of the initiation and roughening of the dendrites on submicrosecond time scales. This growth is followed by a rapid transition to a ledgelike growth mechanism that produces a layered microstructure on a time scale of several microseconds. This study provides insights into the mechanisms governing this complex crystallization process and is a dramatic demonstration of the power of DTEM for studying time-dependent material processes far from equilibrium.
Resumo:
The prospect of synthesizing ordered, covalently bonded structures directly on a surface has recently attracted considerable attention due to its fundamental interest and for potential applications in electronics and photonics. This prospective article focuses on efforts to synthesize and characterize epitaxial one- and two-dimensional (1D and 2D, respectively) polymeric networks on single crystal surfaces. Recent studies, mostly performed using scanning tunneling microscopy (STM), demonstrate the ability to induce polymerization based on Ullmann coupling, thermal dehalogenation and dehydration reactions. The 2D polymer networks synthesized to date have exhibited structural limitations and have been shown to form only small domains on the surface. We discuss different approaches to control 1D and 2D polymerization, with particular emphasis on the surface phenomena that are critical to the formation of larger ordered domains.
Resumo:
The new furnace at the Materials Characterization by X-ray Diffraction beamline at Elettra has been designed for powder diffraction measurements at high temperature (up to 1373 K at the present state). Around the measurement region the geometry of the radiative heating element assures a negligible temperature gradient along the capillary and can accommodate either powder samples in capillary or small flat samples. A double capillary holder allows flow-through of gas in the inner sample capillary while the outer one serves as the reaction chamber. The furnace is coupled to a translating curved imaging-plate detector, allowing the collection of diffraction patterns up to 2[theta] [asymptotically equal to] 130°.
Resumo:
The supramolecular self-assembly of brominated molecules was investigated and compared on Cu(110) and Cu(110)[BOND]O(2×1) surfaces under ultrahigh vacuum. By using scanning tunnelling microscopy, we show that brominated molecules form a disordered structure on Cu(110), whereas a well-ordered supramolecular network is observed on the Cu(110)[BOND]O(2×1) surface. The different adsorption behaviors of these two surfaces are described in terms of weakened molecule–substrate interactions on Cu(110)[BOND]O(2×1) as opposed to bare Cu(110). The effect of oxygen-passivation is to suppress debromination and it can be a convenient approach for investigating other self-assembly processes on copper-based substrates.
Resumo:
The crystallization of amorphous semiconductors is a strongly exothermic process. Once initiated the release of latent heat can be sufficient to drive a self-sustaining crystallization front through the material in a manner that has been described as explosive. Here, we perform a quantitative in situ study of explosive crystallization in amorphous germanium using dynamic transmission electron microscopy. Direct observations of the speed of the explosive crystallization front as it evolves along a laser-imprinted temperature gradient are used to experimentally determine the complete interface response function (i.e., the temperature-dependent front propagation speed) for this process, which reaches a peak of 16 m/s. Fitting to the Frenkel-Wilson kinetic law demonstrates that the diffusivity of the material locally/immediately in advance of the explosive crystallization front is inconsistent with those of a liquid phase. This result suggests a modification to the liquid-mediated mechanism commonly used to describe this process that replaces the phase change at the leading amorphous-liquid interface with a change in bonding character (from covalent to metallic) occurring in the hot amorphous material.