763 resultados para AVT Prosilica GC2450C camera system
Resumo:
Power system stabilizer (PSS) is one of the most important controllers in modern power systems for damping low frequency oscillations. Many efforts have been dedicated to design the tuning methodologies and allocation techniques to obtain optimal damping behaviors of the system. Traditionally, it is tuned mostly for local damping performance, however, in order to obtain a globally optimal performance, the tuning of PSS needs to be done considering more variables. Furthermore, with the enhancement of system interconnection and the increase of system complexity, new tools are required to achieve global tuning and coordination of PSS to achieve optimal solution in a global meaning. Differential evolution (DE) is a recognized as a simple and powerful global optimum technique, which can gain fast convergence speed as well as high computational efficiency. However, as many other evolutionary algorithms (EA), the premature of population restricts optimization capacity of DE. In this paper, a modified DE is proposed and applied for optimal PSS tuning of 39-Bus New-England system. New operators are introduced to reduce the probability of getting premature. To investigate the impact of system conditions on PSS tuning, multiple operating points will be studied. Simulation result is compared with standard DE and particle swarm optimization (PSO).
Resumo:
In deregulated versions of free-market electricity, producers will be free to send power along other utilities. The price of power strongly depends and fluctuates according to mutual benefit index of both supplier and consumer. In such a situation, strong interaction among utilities may cause instabilities in the system. As the frequency of market-based dispatch increases market forces tend to destabilize the stable system dynamics depending on the value of Ks/τλ(market dependent parameter) ratio. This tends to destabilize the coupled dynamics. The implementation of TCSC can effectively damp the inter area modes of oscillations of the coupled market system.
Resumo:
Load modeling plays an important role in power system dynamic stability assessment. One of the widely used methods in assessing load model impact on system dynamic response is through parametric sensitivity analysis. Load ranking provides an effective measure of such impact. Traditionally, load ranking is based on either static or dynamic load model alone. In this paper, composite load model based load ranking framework is proposed. It enables comprehensive investigation into load modeling impacts on system stability considering the dynamic interactions between load and system dynamics. The impact of load composition on the overall sensitivity and therefore on ranking of the load is also investigated. Dynamic simulations are performed to further elucidate the results obtained through sensitivity based load ranking approach.
Resumo:
Power system operation and planning are facing increasing uncertainties especially with the deregulation process and increasing demand for power. Probabilistic power system stability assessment and probabilistic power system planning have been identified by EPRI as one of the important trends in power system operations and planning. Probabilistic small signal stability assessment studies the impact of system parameter uncertainties on system small disturbance stability characteristics. Researches in this area have covered many uncertainties factors such as controller parameter uncertainties and generation uncertainties. One of the most important factors in power system stability assessment is load dynamics. In this paper, composite load model is used to consider the uncertainties from load parameter uncertainties impact on system small signal stability characteristics. The results provide useful insight into the significant stability impact brought to the system by load dynamics. They can be used to help system operators in system operation and planning analysis.
Resumo:
This paper focuses on the super/sub-synchronous operation of the doubly fed induction generator (DFIG) system. The impact of a damping controller on the different modes of operation for the DFIG based wind generation system is investigated. The co-ordinated tuning of the damping controller to enhance the damping of the oscillatory modes using bacteria foraging (BF) technique is presented. The results from eigenvalue analysis are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system. The robustness issue of the damping controller is also investigated
Resumo:
This paper focuses on the implementation of the TS (Tagaki-Sugino) fuzzy controller for the active power and the DC capacitor voltage control of the Doubly Fed Induction Generator (DFIG) based wind generator. DFIG system is represented by a third-order model where electromagnetic transients of the stator are neglected. The effectiveness of the TS-fuzzy controller on the rotor speed oscillations and the DC capacitor voltage variations of the DFIG damping controller on converter ratings of the DFIG system is also investigated. The results of the time domain simulation studies are presented to elucidate the effectiveness of the TS-fuzzy controller compared with conventional PI controller in the DFIG system. The proposed TS-fuzzy controller can improve the fault ride through capability of DFIG compared to the conventional PI controller
'Going live' : establishing the creative attributes of the live multi-camera television professional
Resumo:
In my capacity as a television professional and teacher specialising in multi-camera live television production for over 40 years, I was drawn to the conclusion that opaque or inadequately formed understandings of how creativity applies to the field of live television, have impeded the development of pedagogies suitable to the teaching of live television in universities. In the pursuit of this hypothesis, the thesis shows that television degrees were born out of film studies degrees, where intellectual creativity was aligned to single camera production, and the 'creative roles' of producers, directors and scriptwriters. At the same time, multi-camera live television production was subsumed under the 'mass communication' banner, leading to an understanding that roles other than producer and director are simply technical, and bereft of creative intent or acumen. The thesis goes on to show that this attitude to other television production personnel, for example, the vision mixer, videotape operator and camera operator, relegates their roles to that of 'button pusher'. This has resulted in university teaching models with inappropriate resources and unsuitable teaching practices. As a result, the industry is struggling to find people with the skills to fill the demands of the multi-camera live television sector. In specific terms the central hypothesis is pursued through the following sequenced approach. Firstly, the thesis sets out to outline the problems, and traces the origins of the misconceptions that hold with the notion that intellectual creativity does not exist in live multi-camera television. Secondly, this more adequately conceptualised rendition, of the origins particular to the misconceptions of live television and creativity, is then anchored to the field of examination by presentation of the foundations of the roles involved in making live television programs, using multicamera production techniques. Thirdly, this more nuanced rendition of the field sets the stage for a thorough analysis of education and training in the industry, and teaching models at Australian universities. The findings clearly establish that the pedagogical models are aimed at single camera production, a position that deemphasises the creative aspects of multi-camera live television production. Informed by an examination of theories of learning, qualitative interviews, professional reflective practice and observations, the roles of four multi-camera live production crewmembers (camera operator, vision mixer, EVS/videotape operator and director's assistant), demonstrate the existence of intellectual creativity during live production. Finally, supported by the theories of learning, and the development and explication of a successful teaching model, a new approach to teaching students how to work in live television is proposed and substantiated.
Resumo:
Recent advances in the planning and delivery of radiotherapy treatments have resulted in improvements in the accuracy and precision with which therapeutic radiation can be administered. As the complexity of the treatments increases it becomes more difficult to predict the dose distribution in the patient accurately. Monte Carlo methods have the potential to improve the accuracy of the dose calculations and are increasingly being recognised as the “gold standard” for predicting dose deposition in the patient. In this study, software has been developed that enables the transfer of treatment plan information from the treatment planning system to a Monte Carlo dose calculation engine. A database of commissioned linear accelerator models (Elekta Precise and Varian 2100CD at various energies) has been developed using the EGSnrc/BEAMnrc Monte Carlo suite. Planned beam descriptions and CT images can be exported from the treatment planning system using the DICOM framework. The information in these files is combined with an appropriate linear accelerator model to allow the accurate calculation of the radiation field incident on a modelled patient geometry. The Monte Carlo dose calculation results are combined according to the monitor units specified in the exported plan. The result is a 3D dose distribution that could be used to verify treatment planning system calculations. The software, MCDTK (Monte Carlo Dicom ToolKit), has been developed in the Java programming language and produces BEAMnrc and DOSXYZnrc input files, ready for submission on a high-performance computing cluster. The code has been tested with the Eclipse (Varian Medical Systems), Oncentra MasterPlan (Nucletron B.V.) and Pinnacle3 (Philips Medical Systems) planning systems. In this study the software was validated against measurements in homogenous and heterogeneous phantoms. Monte Carlo models are commissioned through comparison with quality assurance measurements made using a large square field incident on a homogenous volume of water. This study aims to provide a valuable confirmation that Monte Carlo calculations match experimental measurements for complex fields and heterogeneous media.
Resumo:
The knowledge economy of the 21st century requires skills such as creativity, critical thinking, problem solving, communication and collaboration (Partnership for 21st century skills, 2011) – skills that cannot easily be learnt from books, but rather through learning-by-doing and social interaction. Big ideas and disruptive innovation often result from collaboration between individuals from diverse backgrounds and areas of expertise. Public libraries, as facilitators of education and knowledge, have been actively seeking responses to such changing needs of the general public...
Resumo:
On average, 560 fatal run-off-road crashes occur annually in Australia and 135 in New Zealand. In addition, there are more than 14,000 run-off-road crashes causing injuries each year across both countries. In rural areas, run-off-road casualty crashes constitute 50-60% of all casualty crashes. Their severity is particularly high with more than half of those involved sustaining fatal or serious injuries. This paper reviews the existing approach to roadside hazard risk assessment, selection of clear zones and hazard treatments. It proposes a modified approach to roadside safety evaluation and management. It is a methodology based on statistical modelling of run-off-road casualty crashes, and application of locally developed crash modification factors and severity indices. Clear zones, safety barriers and other roadside design/treatment options are evaluated with a view to minimise fatal and serious injuries – the key Safe System objective. The paper concludes with a practical demonstration of the proposed approach. The paper is based on findings from a four-year Austroads research project into improving roadside safety in the Safe System context.
Resumo:
The future emergence of many types of airborne vehicles and unpiloted aircraft in the national airspace means collision avoidance is of primary concern in an uncooperative airspace environment. The ability to replicate a pilot’s see and avoid capability using cameras coupled with vision based avoidance control is an important part of an overall collision avoidance strategy. But unfortunately without range collision avoidance has no direct way to guarantee a level of safety. Collision scenario flight tests with two aircraft and a monocular camera threat detection and tracking system were used to study the accuracy of image-derived angle measurements. The effect of image-derived angle errors on reactive vision-based avoidance performance was then studied by simulation. The results show that whilst large angle measurement errors can significantly affect minimum ranging characteristics across a variety of initial conditions and closing speeds, the minimum range is always bounded and a collision never occurs.
Resumo:
The selection of optimal camera configurations (camera locations, orientations etc.) for multi-camera networks remains an unsolved problem. Previous approaches largely focus on proposing various objective functions to achieve different tasks. Most of them, however, do not generalize well to large scale networks. To tackle this, we introduce a statistical formulation of the optimal selection of camera configurations as well as propose a Trans-Dimensional Simulated Annealing (TDSA) algorithm to effectively solve the problem. We compare our approach with a state-of-the-art method based on Binary Integer Programming (BIP) and show that our approach offers similar performance on small scale problems. However, we also demonstrate the capability of our approach in dealing with large scale problems and show that our approach produces better results than 2 alternative heuristics designed to deal with the scalability issue of BIP.
Resumo:
Smartphones are steadily gaining popularity, creating new application areas as their capabilities increase in terms of computational power, sensors and communication. Emerging new features of mobile devices give opportunity to new threats. Android is one of the newer operating systems targeting smartphones. While being based on a Linux kernel, Android has unique properties and specific limitations due to its mobile nature. This makes it harder to detect and react upon malware attacks if using conventional techniques. In this paper, we propose an Android Application Sandbox (AASandbox) which is able to perform both static and dynamic analysis on Android programs to automatically detect suspicious applications. Static analysis scans the software for malicious patterns without installing it. Dynamic analysis executes the application in a fully isolated environment, i.e. sandbox, which intervenes and logs low-level interactions with the system for further analysis. Both the sandbox and the detection algorithms can be deployed in the cloud, providing a fast and distributed detection of suspicious software in a mobile software store akin to Google's Android Market. Additionally, AASandbox might be used to improve the efficiency of classical anti-virus applications available for the Android operating system.
Resumo:
Nitrogen balance is increasingly used as an indicator of the environmental performance of agricultural sector in national, international, and global contexts. There are three main methods of accounting the national nitrogen balance: farm gate, soil surface, and soil system. OECD (2008) recently reported the nitrogen and phosphorus balances for member countries for the 1985 - 2004 period using the soil surface method. The farm gate and soil system methods were also used in some international projects. Some studies have provided the comparison among these methods and the conclusion is mixed. The motivation of this present paper was to combine these three methods to provide a more detailed auditing of the nitrogen balance and flows for national agricultural production. In addition, the present paper also provided a new strategy of using reliable international and national data sources to calculate nitrogen balance using the farm gate method. The empirical study focused on the nitrogen balance of OECD countries for the period from 1985 to 2003. The N surplus sent to the total environment of OECD surged dramatically in early 1980s, gradually decreased during 1990s but exhibited an increasing trends in early 2000s. The overall N efficiency however fluctuated without a clear increasing trend. The eco-environmental ranking shows that Australia and Ireland were the worst while Korea and Greece were the best.