838 resultados para science centre
Resumo:
A history and introduction to civil unmanned aircraft systems in Australia. Discussion is provided on some of the current challenges facing the civil UAS sector and the research being undertaken to address these challenges.
Resumo:
This presentation explores the requirements and capabilities of Unmanned Aircraft Systems (UAS) for applications in Law Enforcement and Search and Rescue.
Resumo:
Nowadays, Opinion Mining is getting more important than before especially in doing analysis and forecasting about customers’ behavior for businesses purpose. The right decision in producing new products or services based on data about customers’ characteristics means profit for organization/company. This paper proposes a new architecture for Opinion Mining, which uses a multidimensional model to integrate customers’ characteristics and their comments about products (or services). The key step to achieve this objective is to transfer comments (opinions) to a fact table that includes several dimensions, such as, customers, products, time and locations. This research presents a comprehensive way to calculate customers’ orientation for all possible products’ attributes. A use case study is also presented in this paper to show the advantages of using OLAP and data cubes to analyze costumers’ opinions.
Resumo:
Purpose: To determine likely errors in estimating retinal shape using partial coherence interferometric instruments when no allowance is made for optical distortion. Method: Errors were estimated using Gullstrand’s No. 1 schematic eye and variants which included a 10 D axial myopic eye, an emmetropic eye with a gradient-index lens, and a 10.9 D accommodating eye with a gradient-index lens. Performance was simulated for two commercial instruments, the IOLMaster (Carl Zeiss Meditec) and the Lenstar LS 900 (Haag-Streit AG). The incident beam was directed towards either the centre of curvature of the anterior cornea (corneal-direction method) or the centre of the entrance pupil (pupil-direction method). Simple trigonometry was used with the corneal intercept and the incident beam angle to estimate retinal contour. Conics were fitted to the estimated contours. Results: The pupil-direction method gave estimates of retinal contour that were much too flat. The cornea-direction method gave similar results for IOLMaster and Lenstar approaches. The steepness of the retinal contour was slightly overestimated, the exact effects varying with the refractive error, gradient index and accommodation. Conclusion: These theoretical results suggest that, for field angles ≤30º, partial coherence interferometric instruments are of use in estimating retinal shape by the corneal-direction method with the assumptions of a regular retinal shape and no optical distortion. It may be possible to improve on these estimates out to larger field angles by using optical modeling to correct for distortion.
Resumo:
Preservation and enhancement of transportation infrastructure is critical to continuous economic development in Australia. Of particular importance are the road assets infrastructure, due to their high costs of setting up and their social and economic impact on the national economy. Continuous availability of road assets, however, is contingent upon their effective design, condition monitoring, maintenance, and renovation and upgrading. However, in order to achieve this data exchange, integration, and interoperability is required across municipal boundaries. On the other hand, there are no agreed reference frameworks that consistently describe road infrastructure assets. As a consequence, specifications and technical solutions being chosen to manage road assets do not provide adequate detail and quality of information to support asset lifecycle management processes and decisions taken are based on perception not reality. This paper presents a road asset information model, which works as reference framework to, link other kinds of information with asset information; integrate different data suppliers; and provide a foundation for service driven integrated information framework for community infrastructure and asset management.
Resumo:
This paper describes the formulation for the free vibration of joined conical-cylindrical shells with uniform thickness using the transfer of influence coefficient for identification of structural characteristics. These characteristics are importance for structural health monitoring to develop model. This method was developed based on successive transmission of dynamic influence coefficients, which were defined as the relationships between the displacement and the force vectors at arbitrary nodal circles of the system. The two edges of the shell having arbitrary boundary conditions are supported by several elastic springs with meridional/axial, circumferential, radial and rotational stiffness, respectively. The governing equations of vibration of a conical shell, including a cylindrical shell, are written as a coupled set of first order differential equations by using the transfer matrix of the shell. Once the transfer matrix of a single component has been determined, the entire structure matrix is obtained by the product of each component matrix and the joining matrix. The natural frequencies and the modes of vibration were calculated numerically for joined conical-cylindrical shells. The validity of the present method is demonstrated through simple numerical examples, and through comparison with the results of previous researchers.
Resumo:
This paper studies the missing covariate problem which is often encountered in survival analysis. Three covariate imputation methods are employed in the study, and the effectiveness of each method is evaluated within the hazard prediction framework. Data from a typical engineering asset is used in the case study. Covariate values in some time steps are deliberately discarded to generate an incomplete covariate set. It is found that although the mean imputation method is simpler than others for solving missing covariate problems, the results calculated by it can differ largely from the real values of the missing covariates. This study also shows that in general, results obtained from the regression method are more accurate than those of the mean imputation method but at the cost of a higher computational expensive. Gaussian Mixture Model (GMM) method is found to be the most effective method within these three in terms of both computation efficiency and predication accuracy.
Resumo:
Thin films of expoxy nanocomposites modified by multiwall carbon nanotubes (MWCNTs) were prepared by shear mixing and spin casting. The electrical behaviour and its dependence with temperature between 243 and 353 degrees Kelvin were characterized by measuring the direct current (DC) conductivity. Depending on the fabrication process, both linear and non-linear relationships between conductivity and temperature were observed. In addition, the thermal history also played a role in dictating the conductivity. The implications of these observations for potential application of these files as strain sensors are discussed.
Resumo:
Strontium titanate nanocubes with an average edge length of 150mm have been successfully synthesized from a simple hydrothermal system. Characterization techniques such as X-ray powder diffraction analysis, scanning electron microscopy and energy-dispersive analysis of X-rays were used to investigate the products. The results showed that as-prepared powders are pure SrTiO3 with cubic shape, which consists with the growth habit of its intrinsic crystal structure. These uniform nanocubes with high crystallinity will exhibit superior physical properties in the practical applications. Furthermore, during the experimental process, it has been found that the dilute acid washing process is very important to obtain high pure SrTiO3.
Resumo:
The literature supporting the notion that active, student-centered learning is superior to passive, teacher-centered instruction is encyclopedic (Bonwell & Eison, 1991; Bruning, Schraw, & Ronning, 1999; Haile, 1997a, 1997b, 1998; Johnson, Johnson, & Smith, 1999). Previous action research demonstrated that introducing a learning activity in class improved the learning outcomes of students (Mejias, 2010). People acquire knowledge and skills through practice and reflection, not by watching and listening to others telling them how to do something. In this context, this project aims to find more insights about the level of interactivity in the curriculum a class should have and its alignment with assessment so the intended learning outcomes (ILOs) are achieved. In this project, interactivity is implemented in the form of problem- based learning (PBL). I present the argument that a more continuous formative feedback when implemented with the correct amount of PBL stimulates student engagement bringing enormous benefits to student learning. Different levels of practical work (PBL) were implemented together with two different assessment approaches in two subjects. The outcomes were measured using qualitative and quantitative data to evaluate the levels of student engagement and satisfaction in the terms of ILOs.
Resumo:
Linear (or continuous) assets are engineering infrastructure that usually spans long distances and can be divided into different segments, all of which perform the same function but may be subject to different loads and environmental factors. Typical linear assets include railway lines, roads, pipelines and cables. How and when to renew such assets are critical decisions for asset owners as they normally involves significant capital investment. Through investigating the characteristics of linear asset renewal decisions and identifying the critical requirements that are associated with renewal decisions, we present a multi-criteria decision support method to help optimise renewal decisions. A case study that concerns renewal of an economiser's tubing system is a coal-fired power station is adopted to demonstrate the application of this method. Although the paper concerns a particular linear asset decision type, the approach has broad applicability for linear asset management.
Resumo:
In most materials, short stress waves are generated during the process of plastic deformation, phase transformation, crack formation and crack growth. These phenomena are applied in acoustic emission (AE) for the detection of material defects in wide spectrum areas, ranging from non-destructive testing for the detection of materials defects to monitoring of microeismical activity. AE technique is also used for defect source identification and for failure detection. AE waves consist of P waves (primary/longitudinal waves), S waves (shear/transverse waves) and Rayleight (surface) waves as well as reflected and diffracted waves. The propagation of AE waves in various modes has made the determination of source location difficult. In order to use the acoustic emission technique for accurate identification of source location, an understanding of wave propagation of the AE signals at various locations in a plate structure is essential. Furthermore, an understanding of wave propagation can also assist in sensor location for optimum detection of AE signals. In real life, as the AE signals radiate from the source it will result in stress waves. Unless the type of stress wave is known, it is very difficult to locate the source when using the classical propagation velocity equations. This paper describes the simulation of AE waves to identify the source location in steel plate as well as the wave modes. The finite element analysis (FEA) is used for the numerical simulation of wave propagation in thin plate. By knowing the type of wave generated, it is possible to apply the appropriate wave equations to determine the location of the source. For a single plate structure, the results show that the simulation algorithm is effective to simulate different stress waves.
Resumo:
Despite being poised as a standard for data exchange for operation and maintenance data, the database heritage of the MIMOSA OSA-EAI is clearly evident from using a relational model at its core. The XML schema (XSD) definitions, which are used for communication between asset management systems, are based on the MIMOSA common relational information schema (CRIS), a relational model, and consequently, many database concepts permeate the communications layer. The adoption of a relational model leads to several deficiencies, and overlooks advances in object-oriented approach for an upcoming version of the specification, and the common conceptual object model (CCOM) sees a transition to fully utilising object-oriented features for the standard. Unified modelling language (UML) is used as a medium for documentation as well as facilitating XSD code generation. This paper details some of the decisions faced in developing the CCOM and provides a glimpse into the future of asset management and data exchange models.
Resumo:
Vibration analysis has been a prime tool in condition monitoring of rotating machines, however, its application to internal combustion engines remains a challenge because engine vibration signatures are highly non-stationary that are not suitable for popular spectrum-based analysis. Signal-to-noise ratio is a main concern in engine signature analysis due to severe background noise being generated by consecutive mechanical events, such as combustion, valve opening and closing, especially in multi-cylinder engines. Acoustic Emission (AE) has been found to give excellent signal-to-noise ratio allowing discrimination of fine detail of normal or abnormal events during a given cycle. AE has been used to detect faults, such as exhaust valve leakage, fuel injection behaviour, and aspects of the combustion process. This paper presents a review of AE application to diesel engine monitoring and preliminary investigation of AE signature measured on an 18-cylinder diesel engine. AE is compared with vibration acceleration for varying operating conditions: load and speed. Frequency characteristics of AE from those events are analysed in time-frequency domain via short time Fourier trasform. The result shows a great potential of AE analysis for detection of various defects in diesel engines.