679 resultados para Computer art
Resumo:
This paper discusses a Dumber of key issues for the development of robust, obstacle detection systems for autonomous mining and construction vehicles. A taxonomy of obstacle detection systems is described; An overview of the state-of- the-art in obstacle detection for outdoor autonomous vehicles is presented with their applicability to the mining and construction environments noted. The issue of so-called fail-safe obstacle detection is then discussed. Finally, we describe the development of an obstacle detection system for a mining vehicle.
Resumo:
This paper reviews the state-of-the-art in the automation of underground mining vehicles and reports on the development of an autonomous navigation system under development through the CMTE with sponsorship arranged by AMIRA. Past attempts at automating LHDs and haul trucks are described and their particular strengths and weaknesses are discussed. The auto-guidance system being developed overcomes some of the limitations of state-of-the-art prototype æcommercialÆ systems. It can be retrofitted to existing remote controlled vehicles, uses minimum installed infrastructure and is flexible enough for rapid relocation to alternate routes. The navigation techniques use data fusion of two separate sets of sensors combining natural feature recognition, nodal maps and inertial navigation techniques. Collision detection is incorporated and people and other traffic are excluded from the tramming area. This paper describes the work being done by the group with regard to auto-tramming and also outlines the future goals.
Resumo:
This paper reviews the state-of-the art in the automation of underground truck haulage. Past attemps at automating LHDs and haul trucks are described and their particular strengths and weaknesses are listed. We argue that the simple auto-tram...
Resumo:
Advances in neural network language models have demonstrated that these models can effectively learn representations of words meaning. In this paper, we explore a variation of neural language models that can learn on concepts taken from structured ontologies and extracted from free-text, rather than directly from terms in free-text. This model is employed for the task of measuring semantic similarity between medical concepts, a task that is central to a number of techniques in medical informatics and information retrieval. The model is built with two medical corpora (journal abstracts and patient records) and empirically validated on two ground-truth datasets of human-judged concept pairs assessed by medical professionals. Empirically, our approach correlates closely with expert human assessors ($\approx$ 0.9) and outperforms a number of state-of-the-art benchmarks for medical semantic similarity. The demonstrated superiority of this model for providing an effective semantic similarity measure is promising in that this may translate into effectiveness gains for techniques in medical information retrieval and medical informatics (e.g., query expansion and literature-based discovery).
Resumo:
Terra Preta is a site-specific bio-energy project which aims to create a synergy between the public and the pre-existing engineered landscape of Freshkills Park on Staten Island, New York. The project challenges traditional paradigms of public space by proposing a dynamic and ever-changing landscape. The initiative allows the publuc to self-organise the landscape and to engage in 'algorithmic processes' of growth, harvest and space creation.
Resumo:
Experimental studies have found that when the state-of-the-art probabilistic linear discriminant analysis (PLDA) speaker verification systems are trained using out-domain data, it significantly affects speaker verification performance due to the mismatch between development data and evaluation data. To overcome this problem we propose a novel unsupervised inter dataset variability (IDV) compensation approach to compensate the dataset mismatch. IDV-compensated PLDA system achieves over 10% relative improvement in EER values over out-domain PLDA system by effectively compensating the mismatch between in-domain and out-domain data.
Resumo:
Earlier work within the CSCW community treated the notion of awareness as an important resource for supporting shared work and work-related activities. However, new trends have emerged in recent times that utilize the notion of awareness beyond work-related activities and explore social, emotional and interpersonal aspects of people’s everyday lives. To investigate this broader notion of awareness, we carried out a field study using ethnographic and cultural probe based methods in an academic setting. Our aim was to study staff members’ everyday activities in their natural surroundings; understand how awareness beyond work-related activities plays out and how it is dealt with. Our field study results shed light on two broad and sometimes overlapping themes of interaction between staff members: 1) self-representations and 2) casual encounters. We provide examples from the field illustrating these two themes. In general, our results show how awareness is closely associated with people’s everyday lives, where they creatively and artfully utilize ordinary resources from their environments to carry out their routine activities. Using the results of our field study, we describe the design of a situated display called Panorama that is meant to support non-critical, non-work-related awareness within work environments.
Resumo:
The International Journal of Robotics Research (IJRR) has a long history of publishing the state-of-the-art in the field of robotic vision. This is the fourth special issue devoted to the topic. Previous special issues were published in 2012 (Volume 31, No. 4), 2010 (Volume 29, Nos 2–3) and 2007 (Volume 26, No. 7, jointly with the International Journal of Computer Vision). In a closely related field was the special issue on Visual Servoing published in IJRR, 2003 (Volume 22, Nos 10–11). These issues nicely summarize the highlights and progress of the past 12 years of research devoted to the use of visual perception for robotics.
Resumo:
Affect is an important feature of multimedia content and conveys valuable information for multimedia indexing and retrieval. Most existing studies for affective content analysis are limited to low-level features or mid-level representations, and are generally criticized for their incapacity to address the gap between low-level features and high-level human affective perception. The facial expressions of subjects in images carry important semantic information that can substantially influence human affective perception, but have been seldom investigated for affective classification of facial images towards practical applications. This paper presents an automatic image emotion detector (IED) for affective classification of practical (or non-laboratory) data using facial expressions, where a lot of “real-world” challenges are present, including pose, illumination, and size variations etc. The proposed method is novel, with its framework designed specifically to overcome these challenges using multi-view versions of face and fiducial point detectors, and a combination of point-based texture and geometry. Performance comparisons of several key parameters of relevant algorithms are conducted to explore the optimum parameters for high accuracy and fast computation speed. A comprehensive set of experiments with existing and new datasets, shows that the method is effective despite pose variations, fast, and appropriate for large-scale data, and as accurate as the method with state-of-the-art performance on laboratory-based data. The proposed method was also applied to affective classification of images from the British Broadcast Corporation (BBC) in a task typical for a practical application providing some valuable insights.
Resumo:
Background As the increasing adoption of information technology continues to offer better distant medical services, the distribution of, and remote access to digital medical images over public networks continues to grow significantly. Such use of medical images raises serious concerns for their continuous security protection, which digital watermarking has shown great potential to address. Methods We present a content-independent embedding scheme for medical image watermarking. We observe that the perceptual content of medical images varies widely with their modalities. Recent medical image watermarking schemes are image-content dependent and thus they may suffer from inconsistent embedding capacity and visual artefacts. To attain the image content-independent embedding property, we generalise RONI (region of non-interest, to the medical professionals) selection process and use it for embedding by utilising RONI’s least significant bit-planes. The proposed scheme thus avoids the need for RONI segmentation that incurs capacity and computational overheads. Results Our experimental results demonstrate that the proposed embedding scheme performs consistently over a dataset of 370 medical images including their 7 different modalities. Experimental results also verify how the state-of-the-art reversible schemes can have an inconsistent performance for different modalities of medical images. Our scheme has MSSIM (Mean Structural SIMilarity) larger than 0.999 with a deterministically adaptable embedding capacity. Conclusions Our proposed image-content independent embedding scheme is modality-wise consistent, and maintains a good image quality of RONI while keeping all other pixels in the image untouched. Thus, with an appropriate watermarking framework (i.e., with the considerations of watermark generation, embedding and detection functions), our proposed scheme can be viable for the multi-modality medical image applications and distant medical services such as teleradiology and eHealth.
Resumo:
This thesis articulates and examines public engagement programming in an emerging, non¬-traditional site. As a practice-led research project, the creative work proposes a site responsive, engagement centric, agile model for curatorial programming that developed out of the dynamic, new media/digital, curatorial practice at QUT's Creative Industries Precinct. The model and its accompanying exegetical framework, Curating in Uncharted Territories, offer a theoretically informed approach to programming, delivering and reporting for curatorial practices in a non¬-traditional sites of public engagement. The research provides the foundation for full development of the model and the basis for further research.
Resumo:
Emergency Response Teams increasingly use interactive technology to help manage information and communications. The challenge is to maintain a high situation awareness for different interactive devices sizes. This research specifically compared a handheld interactive device in the form of an iPad with a large interactive multi-touch tabletop. A search and rescue inspired simulator was designed to test operator situation awareness for the two sized devices. The results show that operators had better situation awareness on the tabletop device when the operation related to detecting of moving targets, searching target locations, distinguishing target types, and comprehending displayed information.
Resumo:
With the extensive use of rating systems in the web, and their significance in decision making process by users, the need for more accurate aggregation methods has emerged. The Naïve aggregation method, using the simple mean, is not adequate anymore in providing accurate reputation scores for items [6 ], hence, several researches where conducted in order to provide more accurate alternative aggregation methods. Most of the current reputation models do not consider the distribution of ratings across the different possible ratings values. In this paper, we propose a novel reputation model, which generates more accurate reputation scores for items by deploying the normal distribution over ratings. Experiments show promising results for our proposed model over state-of-the-art ones on sparse and dense datasets.
Resumo:
Our built heritage plays an important role in the ongoing story of our city. Modern cities such as Brisbane embraced Art Deco style in its architecture as it swept the world during the interwar period. From inner city landmarks such as the striking McWhirters department store to lesser-known gems further afield like the streamlined Archerfield Airport administration building, Brisbane has a significant range of intriguing and beautiful Art Deco buildings. This publication documents and celebrates a selection of our favourite residential and commercial examples. Written contributions from a range of authors are complemented by stunning modern photography and historic archive imagery, taking readers on a journey through this fascinating era. The articles not only describe the aesthetic and architectural features, but also delve into the associated social history. Brisbane Art Deco: Stories of our Built Heritage is a charming and informative reference, and offers a colourful insight into Brisbane’s built heritage and the life and times of this dynamic city.