861 resultados para Aboriginal studies
Resumo:
Nine probes were isolated from a human chromosome 1 enriched library and mapped to regions of chromosome 1 using somatic cell hybrid lines. One clone, LR67, which mapped 1q12→q23 detected a BglI RFLP. This probe, as well as 4 other known chromosome 1 markers, α-spectrin, Factor XIIIB, DR10 and DR78, were used for linkage studies in 15 Charcot-Marie-Tooth disease (CMT1) families. Close linking of CMT1 to any of the 5 markers was not indicated. Total lod scores excluded linkage of CMT1 to LR67 and to DR10 at 5 cM or less, to DR78 and 10 cM or less, α-spectrin at 15 cM or less and Factor XIIIB at 20 cM or less. Possible linkage, however, was shown between LR67 and CMT1 at a distance of 30 cM. Also linkage at a distance of 5 cM was detected between this probe and α-spectrin.
Resumo:
"To the Editor: Indigenous people face challenges that may make them more sensitive to extreme temperatures. These include poor health, inadequate infrastructure, and poverty.1 Few studies have examined the effects of extreme temperatures on Indigenous people2 or have considered the possible role of body mass in sensitivity to extreme temperatures..."
Resumo:
Interest in chromosome 18 in essential hypertension comes from comparative mapping of rat blood pressure quantitative trait loci (QTL), familial orthostatic hypotensive syndrome studies, and essential hypertension pedigree linkage analyses indicating that a locus or loci on human chromosome 18 may play a role in hypertension development. To further investigate involvement of chromosome 18 in human essential hypertension, the present study utilized a linkage scan approach to genotype twelve microsatellite markers spanning human chromosome 18 in 177 Australian Caucasian hypertensive (HT) sibling pairs. Linkage analysis showed significant excess allele sharing of the D18S61 marker when analyzed with SPLINK (P=0.00012), ANALYZE (Sibpair) (P=0.0081), and also with MAPMAKER SIBS (P=0.0001). Similarly, the D18S59 marker also showed evidence for excess allele sharing when analyzed with SPLINK (P=0.016), ANALYZE (Sibpair) (P=0.0095), and with MAPMAKER SIBS (P = 0.014). The adenylate cyclase activating polypeptide 1 gene (ADCYAP1) is involved in vasodilation and has been co-localized to the D18S59 marker. Results testing a microsatellite marker in the 3′ untranslated region of ADCYAP1 in age and gender matched HT and normotensive (NT) individuals showed possible association with hypertension (P = 0.038; Monte Carlo P = 0.02), but not with obesity. The present study shows a chromosome 18 role in essential hypertension and indicates that the genomic region near the ADCYAP1 gene or perhaps the gene itself may be implicated. Further investigation is required to conclusively determine the extent to which ADCYAP1 polymorphisms are involved in essential hypertension. © 2003 Wiley-Liss, Inc.
Resumo:
Submission recommended addition of a new 'self-enacting' preamble and enacting words to the Commownealth Constitution, and replacement of the 'race power' by a series of more specific powers relating to the recognition of native title and laws of the indigenous people.
Resumo:
This paper presents a numerical study on the response of axially loaded slender square concrete filled steel tube (CFST) columns under low velocity lateral impact loading. A finite element analysis (FEA) model was developed using the explicit dynamic nonlinear finite element code LS -DYNA in which the strain rate effects of both steel and concrete, contact between steel tube and concrete and confinement effect provided by the steel tube for the concrete were considered. The model also benefited from a relatively recent feature of LS-DYNA for applying a pre-loading in the explicit solver. The developed numerical model was verified for its accuracy and adequacy by comparing the results with experimental results available in the literature. The verified model was then employed to conduct a parametric study to investigate the influence of axial load level, impact location, support conditions, and slenderness ratio on the response of the CFST columns. A good agreement between the numerical and experimental results was achieved. The model could reasonably predict the impact load-deflection history and deformed shape of the column at the end of the impact event. The results of the parametric study showed that whilst impact location, axial load level and slenderness ratio can have a significant effect on the peak impact force, residual lateral deflection and maximum lateral deflection, the influence of support fixity is minimal. With an increase of axial load to up to a certain level, the peak force increases; however, a further increase in the axial load causes a decrease in the peak force. Both residual lateral deflection and maximum lateral deflection increase as axial load level increases. Shifting the impact location towards the supports increases the peak force and reduces both residual and maximum lateral deflections. A rise in slenderness ratio decreases the peak force and increases the residual and maximum lateral deflections.
On-road driving studies to understand why drivers behave as they do at regional rail level crossings
Resumo:
Improving safety at rail level crossings is an important part of both road and rail safety strategies. While low in number, crashes between vehicles and trains at level crossings are catastrophic events typically involving multiple fatalities and serious injuries. Advances in driving assessment methods, such as the provision of on-road instrumented test vehicles with eye and head tracking, provide researchers with the opportunity to further understand driver behaviour at such crossings in ways not previously possible. This paper describes a study conducted to further understand the factors that shape driver behaviour at rail level crossings using instrumented vehicles. Twenty-two participants drove an On-Road Test Vehicle (ORTeV) on a predefined route in regional Victoria with a mix of both active (flashing lights with/without boom barriers) and passively controlled (stop, give way) crossings. Data collected included driving performance data, head checks, and interview data to capture driver strategies. The data from an integrated suite of methods demonstrated clearly how behaviour differs at active and passive level crossings, particularly for inexperienced drivers. For example, the head check data clearly show the reliance and expectancies of inexperienced drivers for active warnings even when approaching passively controlled crossings. These studies provide very novel and unique insights into how level crossing design and warnings shape driver behaviour.
Resumo:
This research paper examines the potential of neighbourhood centres to generate and enhance social capital through their programs, activities, membership associations and community engagement. Social capital is a complex concept involving elements of norms, networks, and trust and is generally seen as enhancing community cohesion and the ability to attain common goals (outlined in more detail in Section 3). The aim of this research project is to describe the nature of social capital formation in terms of development and change in norms, networks and trust within the context of the operations of neighbourhood centres in three Queensland locations (i.e., Sherwood, Kingston/Slacks Creek, and Maleny). The study was prompted by surprisingly little research into how neighbourhood centres and their clients contribute to the development of social capital. Considering the large volume of research on the role of community organisations in building social capital, it is remarkable that perhaps the most obvious organisation with 'social capitalist' intentions has received so little attention (apart from Bullen and Onyx, 2005). Indeed, ostensibly, neighbourhood centres are all about social capital.
Resumo:
There is a growing awareness worldwide of the significance of social media to communication in times of both natural and human-created disasters and crises. While the media have long been used as a means of broadcasting messages to communities in times of crisis – bushfires, floods, earthquakes etc. – the significance of social media in enabling many-to-many communication through ubiquitous networked computing and mobile media devices is becoming increasingly important in the fields of disaster and emergency management. This paper undertakes an analysis of the uses made of social media during two recent natural disasters: the January 2011 floods in Brisbane and South-East Queensland in Australia, and the February 2011 earthquake in Christchurch, New Zealand. It is part of a wider project being undertaken by a research team based at the Queensland University of Technology in Brisbane, Australia, that is working with the Queensland Department of Community Safety (DCS) and the EIDOS Institute, and funded by the Australian Research Council (ARC) through its Linkages program. The project combines large-scale, quantitative social media tracking and analysis techniques with qualitative cultural analysis of communication efforts by citizens and officials, to enable both emergency management authorities and news media organisations to develop, implement, and evaluate new social media strategies for emergency communication.
Resumo:
As of June 2009, 361 genome-wide association studies (GWAS) had been referenced by the HuGE database. GWAS require DNA from many thousands of individuals, relying on suitable DNA collections. We recently performed a multiple sclerosis (MS) GWAS where a substantial component of the cases (24%) had DNA derived from saliva. Genotyping was done on the Illumina genotyping platform using the Infinium Hap370CNV DUO microarray. Additionally, we genotyped 10 individuals in duplicate using both saliva- and blood-derived DNA. The performance of blood- versus saliva-derived DNA was compared using genotyping call rate, which reflects both the quantity and quality of genotyping per sample and the “GCScore,” an Illumina genotyping quality score, which is a measure of DNA quality. We also compared genotype calls and GCScores for the 10 sample pairs. Call rates were assessed for each sample individually. For the GWAS samples, we compared data according to source of DNA and center of origin. We observed high concordance in genotyping quality and quantity between the paired samples and minimal loss of quality and quantity of DNA in the saliva samples in the large GWAS sample, with the blood samples showing greater variation between centers of origin. This large data set highlights the usefulness of saliva DNA for genotyping, especially in high-density single-nucleotide polymorphism microarray studies such as GWAS.
Resumo:
We conducted on-road and simulator studies to explore the mechanisms underpinning driver-rider crashes. In Study 1 the verbal protocols of 40 drivers and riders were assessed at intersections as part of a 15km on-road route in Melbourne. Network analysis of the verbal transcripts highlighted key differences in the situation awareness of drivers and riders at intersections. In a further study using a driving simulator we examined in car drivers the influence of acute exposure to motorcyclists. In a 15 min simulated drive, 40 drivers saw either no motorcycles or a high number of motorcycles in the surrounding traffic. In a subsequent 45-60 min drive, drivers were asked to detect motorcycles in traffic. The proportion of motorcycles was manipulated so that there was either a high (120) or low (6) number of motorcycles during the drive. Those drivers exposed to a high number of motorcycles were significantly faster at detecting motorcycles. Fundamentally, the incompatible situation awareness at intersections by drivers and riders underpins the conflicts. Study 2 offers some suggestion for a countermeasure here, although more research around schema and exposure training to support safer interactions is needed.
Resumo:
The candidate gene approach has been a pioneer in the field of genetic epidemiology, identifying risk alleles and their association with clinical traits. With the advent of rapidly changing technology, there has been an explosion of in silico tools available to researchers, giving them fast, efficient resources and reliable strategies important to find casual gene variants for candidate or genome wide association studies (GWAS). In this review, following a description of candidate gene prioritisation, we summarise the approaches to single nucleotide polymorphism (SNP) prioritisation and discuss the tools available to assess functional relevance of the risk variant with consideration to its genomic location. The strategy and the tools discussed are applicable to any study investigating genetic risk factors associated with a particular disease. Some of the tools are also applicable for the functional validation of variants relevant to the era of GWAS and next generation sequencing (NGS).
Resumo:
In the sugar industry, processing juice derived from the whole sugar cane plant adversely affects the yield and quality of the product sugar. Dr Thai investigated the aggregation behaviour of sugar cane juice particles and developed strategies to improve the removal of non-sucrose impurities.
Resumo:
Y123 samples with varying amounts of added Y211, PtO 2 and CeO 2 have been melt processed and quenched from temperatures between 960°C and 1100°C. The microstructures of the quenched samples have been characterized using a combination of x-ray diffractometry, optical microscopy, scanning electron microscopy, microprobe analysis, energy-dispersive x-ray spectroscopy and wavelength-dispersive x-ray spectroscopy. The Ba-Cu-O-rich melt undergoes complex changes as a function of temperature and time. A region of stability of BaCuO 2 (BC1) and BaCu 2O 2 (BC2) exists below 1040°C in samples of Y123 + 20 mol% Y211. Ba 2Cu 3O 5 is stabilized by rapid quenching but appears to separate into BC1 and BC2 at lower quenching rates. PtO 2 and CeO 2 additions affect the distribution and volume fractions of the two Ba-Cu-oxide phases.
Resumo:
Utility functions in Bayesian experimental design are usually based on the posterior distribution. When the posterior is found by simulation, it must be sampled from for each future data set drawn from the prior predictive distribution. Many thousands of posterior distributions are often required. A popular technique in the Bayesian experimental design literature to rapidly obtain samples from the posterior is importance sampling, using the prior as the importance distribution. However, importance sampling will tend to break down if there is a reasonable number of experimental observations and/or the model parameter is high dimensional. In this paper we explore the use of Laplace approximations in the design setting to overcome this drawback. Furthermore, we consider using the Laplace approximation to form the importance distribution to obtain a more efficient importance distribution than the prior. The methodology is motivated by a pharmacokinetic study which investigates the effect of extracorporeal membrane oxygenation on the pharmacokinetics of antibiotics in sheep. The design problem is to find 10 near optimal plasma sampling times which produce precise estimates of pharmacokinetic model parameters/measures of interest. We consider several different utility functions of interest in these studies, which involve the posterior distribution of parameter functions.