107 resultados para zincsulfide ZnS sputtering dips AFM EFM KPFM Morphology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate for the first time the ionic-liquid-mediated synthesis of nanostructured CuTCNQ by the simple immersion of copper in a solution of TCNQ where the viscosity of the medium significantly impacts the corrosion–crystallization process and the final morphology of the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteocytes are the mature cells and perform as mechanosensors within the bone. The mechanical property of osteocytes plays an important role to fulfill these functions. However, little researches have been done to investigate the mechanical deformation properties of single osteocytes. Atomic Force Microscopy (AFM) is a state-of-art experimental facility for high resolution imaging of tissues, cells and any surfaces as well as for probing mechanical properties of the samples both qualitatively and quantitatively. In this paper, the experimental study based on AFM is firstly used to obtain forceindentation curves of single round osteocytes. The porohyperelastic (PHE) model of a single osteocyte is then developed by using the inverse finite element analysis (FEA) to identify and extract mechanical properties from the experiment results. It has been found that the PHE model is a good candidature for biomechanics studies of osteocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to determine the creep and relaxation responses of single chondrocytes in vitro. Firstly, Atomic Force Microscopy (AFM) was used to obtain the force-indentation curves of single chondrocytes at the strain-rate of 7.05 s-1. This result was then employed in inverse finite element analysis (FEA) using porohyperelastic (PHE) idealization of the cells to determine their mechanical properties. The PHE model results agreed well with AFM experimental data. This PHE model was then utilized to study chondrocyte’s creep and relaxation behaviors. The results revealed that the effect of fluid was predominant for cell’s mechanical behaviors and that the PHE is a good model for biomechanics studies of chondrocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Stretching of tissue stimulates angiogenesis but increased motion at a fracture site hinders revascularisation. In vitro studies have indicated that mechanical stimuli promote angiogenic responses in endothelial cells, but can either inhibit or enhance responses when applied directly to angiogenesis assays. We anticipated that cyclic tension applied during endothelial network assembly would increase vascular structure formation up to a certain threshold. Methods Fibroblast/HUVEC co-cultures were subjected to cyclic equibiaxial strain (1 Hz; 6 h/day; 7 days) using the FlexerCell FX-4000T system and limiting rings for simultaneous application of multiple strain magnitudes (0–13%). Cells were labelled using anti-PECAM-1, and image analysis provided measures of endothelial network length and numbers of junctions. Results Cyclic stretching had no significant effect on the total length of endothelial networks (P > 0.2) but resulted in a strain-dependent decrease in branching and localised alignments of endothelial structures, which were in turn aligned with the supporting fibroblastic construct. Conclusion The organisation of endothelial networks under cyclic strain is dominated by structural adaptation to the supporting construct. It may be that, in fracture healing, the formation and integrity of the granulation tissue and callus is ultimately critical in revascularisation and its failure under severe strain conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loss of cell-cell adhesion in carcinoma cells may be an important step in the acquisition of an invasive, metastatic phenotype. We have examined the expression of the epithelial-specific cell adhesion molecule uvomorulin (E-cadherin, cell-CAM 120/80, L-CAM) in human breast cancer cell lines. We find that fibroblastoid, highly invasive, vimentin-expressing breast cancer cell lines do not express uvomorulin. Of the more epithelial-appearing, less invasive, keratin-expressing breast cancer cell lines, some express uvomorulin, and some do not. We examined the morphologies of the cell lines in the reconstituted basement membrane matrix Matrigel and measured the ability of the cells to traverse a Matrigel-coated filter as in vitro models for detachment of carcinoma cells from neighboring cells and invasion through basement membrane into surrounding tissue. Colonies of uvomorulin-positive cells have a characteristic fused appearance in Matrigel, whereas uvomorulin-negative cells appear detached. Cells which are uvomorulin negative and vimentin positive have a stellate morphology in Matrigel. We show that uvomorulin is responsible for the fused colony morphology in Matrigel since treatment of uvomorulin-positive MCF-7 cells with an antibody to uvomorulin caused the cells to detach from one another but did not induce invasiveness in these cells, as measured by their ability to cross a Matrigel-coated polycarbonate filter in a modified Boyden chamber assay. Two uvomorulin-negative, vimentin-negative cell lines are also not highly invasive as measured by this assay. We suggest that loss of uvomorulin-mediated cell-cell adhesion may be one of many changes involved in the progression of a carcinoma cell to an invasive phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The particle size, morphology, crystallinity order and structural defects of four kaolinite samples are characterized by the techniques including particle size analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). The particle size of four kaolinite samples gradually increases. Four samples all belong to the ordered kaolinite and show a decrease in structural order with the increase of kaolinite particle size. The changes of structural defect are proved by the increase of the band splitting in Raman spectroscopy, the decrease of the intensity of absorption bands in infrared spectroscopy, and the decrease of equivalent silicon atom and the increase of nonequivalent aluminum atom in MAS NMR spectroscopy. The differences in morphology and structural defect are attributed to the broken bonds of Al–O–Si, Al–O–Al and Si–O–Si and the Al substitution for Si in tetrahedral sheets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lanthanum oxide (La2O3) nanostructured films are synthesized on a p-type silicon wafer by ablation of La2O3 pellet due to interaction with hot dense argon plasmas in a modified dense plasma focus (DPF) device. The nanostructured films are investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) spectra. SEM study shows the formation of nano-films having nano-size structures with the average nanostructures size ~25, ~53, and ~45 nm for one, two, and three DPF shots, respectively. The nanostructures sizes and morphology of nano-films are consistent between the AFM and SEM analyses. XRD spectra confirms nano-sized La2O3 with an average grain size ~34, ~51, and ~42 nm for one, two, and three DPF shots, respectively. The electrical properties such as current-voltage and capacitance-voltage (C-V) characteristics of the Al-La2O3-Si metal-oxide- semiconductor (MOS) capacitor structure are measured. The current conduction mechanism of the MOS capacitors is also demonstrated. The C-V characteristics are further used to obtain the electrical parameters such as the dielectric constant, oxide thickness, flat-band capacitance, and flat-band voltage of the MOS capacitors. These measurements demonstrate significantly lower leakage currents without any commonly used annealing or doping, thereby revealing a significant improvement of the MOS nanoelectronic device performance due to the incorporation of the DPF-produced La2O3 nano-films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the comparative study of magnetotransport properties of large-area vertical few-layer graphene networks with different morphologies, measured in a strong (up to 10 T) magnetic field over a wide temperature range. The petal-like and tree-like graphene networks grown by a plasma enhanced CVD process on a thin (500 nm) silicon oxide layer supported by a silicon wafer demonstrate a significant difference in the resistance-magnetic field dependencies at temperatures ranging from 2 to 200 K. This behaviour is explained in terms of the effect of electron scattering at ultra-long reactive edges and ultra-dense boundaries of the graphene nanowalls. Our results pave a way towards three-dimensional vertical graphene-based magnetoelectronic nanodevices with morphology-tuneable anisotropic magnetic properties. © The Royal Society of Chemistry 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of effective control of morphology and electrical properties of self-organized graphene structures on plasma-exposed Si surfaces is demonstrated. The structures are vertically standing nanosheets and can be grown without any catalyst and any external heating upon direct contact with high-density inductively coupled plasmas at surface temperatures not exceeding 673–723 K. Study of nucleation and growth dynamics revealed the possibility to switch-over between the two most common (turnstile- and maze-like) morphologies on the same substrates by a simple change of the plasma parameters. This change leads to the continuous or discontinuous native oxide layer that supports self-organized patterns of small carbon nanoparticles on which the structures nucleate. It is shown that by tailoring the nanoparticle arrangement one can create various three-dimensional architectures and networks of graphene nanosheet structures. We also demonstrate effective control of the degree of graphitization of the graphene nanosheet structures from the initial through the final growth stages. This makes it possible to tune the electrical resistivity properties of the produced three-dimensional patterns/networks from strongly dielectric to semiconducting. Our results contribute to enabling direct integration of graphene structures into presently dominant Si-based nanofabrication platform for next-generation nanoelectronic, sensor, biomedical, and optoelectronic components and nanodevices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility to control the morphology and nucleation density of quasi-one-dimensional, single-crystalline α -Fe2 O3 nanostructures by varying the electric potential of iron surfaces exposed to reactive oxygen plasmas is demonstrated experimentally. A systematic increase in the oxygen ion flux through rf biasing of otherwise floating substrates and then an additional increase of the ion/neutral density resulted in remarkable structural transformations of straight nanoneedles into nanowires with controlled tapering/aspect ratio and also in larger nucleation densities. Multiscale numerical simulations relate the microscopic ion flux topographies to the nanostructure nucleation and morphological evolution. This approach is applicable to other metal-oxide nanostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An innovative custom-designed inductively coupled plasma-assisted RF magnetron sputtering deposition system has been developed to synthesize B-doped microcrystalline silicon thin films using a pure boron sputtering target in a reactive silane and argon gas mixture. Films were deposited using different boron target powers ranging from 0 to 350 W at a substrate temperature of 250 °C. The effect of the boron target power on the structural and electrical properties of the synthesized films was extensively investigated using X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and Hall-effect system. It is shown that, with an initial increase of the boron target power from 0 to 300 W, the structural and electrical properties of the B-doped microcrystalline films are improved. However, when the target power is increased too much (e.g. to 350 W), these properties become slightly worse. The variation of the structural and electrical properties of the synthesized B-doped microcrystalline thin films is related to the incorporation of boron atoms during the crystallization and doping of silicon in the inductively coupled plasma-based process. This work is particularly relevant to the microcrystalline silicon-based p-i-n junction solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new deposition technique-inductively coupled plasma-assisted RF magnetron sputtering has been developed to fabricate SiC nanoislanded films. In this system, the plasma production and magnetron sputtering can be controlled independently during the discharge. The deposited SiC nanoislanded films are highly uniform, have excellent stoichiometry, have a typical size of 10-45 nm, and contain small (∼ 6 nm) cubic SiC nanocrystallites embedded in an amorphous SiC matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RF magnetron concurrent sputtering of Hydroxyapatite and Ti forming functionally graded calcium phosphate-based composite bioactive films on Ti-6Al-4V orthopedic alloy is reported. Calcium oxide phosphate (4CaO•P2O5) is the main crystalline phase. In vitro cell culturing tests suggest outstanding biocompatibility of the Ca-P-Ti films. Images of the plasma-enhanced sputtering processes and cell culturing are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotips have been synthesized from a thin carbon film deposited on silicon by bias-enhanced hot filament chemical vapor deposition under different process parameters. The results of scanning electron microscopy indicate that high-quality carbon nanotips can only be obtained under conditions when the ion flux is effectively drawn from the plasma sustained in a CH4 + NH3 + H2 gas mixture. It is shown that the morphology of the carbon nanotips can be controlled by varying the process parameters such as the applied bias, gas pressure, and the NH3 / H2 mass flow ratios. The nanotip formation process is examined through a model that accounts for surface diffusion, in addition to sputtering and deposition processes included in the existing models. This model makes it possible to explain the major difference in the morphologies of the carbon nanotips formed without and with the aid of the plasma as well as to interpret the changes of their aspect ratio caused by the variation in the ion/gas fluxes. Viable ways to optimize the plasma-based process parameters to synthesize high-quality carbon nanotips are suggested. The results are relevant to the development of advanced plasma-/ion-assisted methods of nanoscale synthesis and processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plasma-assisted RF sputtering deposition of a biocompatible, functionally graded calcium phosphate bioceramic on a Ti6A14 V orthopedic alloy is reported. The chemical composition and presence of hydroxyapatite (HA), CaTiO3, and CaO mineral phases can be effectively controlled by the process parameters. At higher DC biases, the ratio [Ca]/[P] and the amount of CaO increase, whereas the HA content decreases. Optical emission spectroscopy suggests that CaO+ is the dominant species that responds to negative DC bias and controls calcium content. Biocompatibility tests in simulated body fluid confirm a positive biomimetic response evidenced by in-growth of an apatite layer after 24 h of immersion.