141 resultados para typological classification of languages


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined data matrix consisting of high performance liquid chromatography–diode array detector (HPLC–DAD) and inductively coupled plasma-mass spectrometry (ICP-MS) measurements of samples from the plant roots of the Cortex moutan (CM), produced much better classification and prediction results in comparison with those obtained from either of the individual data sets. The HPLC peaks (organic components) of the CM samples, and the ICP-MS measurements (trace metal elements) were investigated with the use of principal component analysis (PCA) and the linear discriminant analysis (LDA) methods of data analysis; essentially, qualitative results suggested that discrimination of the CM samples from three different provinces was possible with the combined matrix producing best results. Another three methods, K-nearest neighbor (KNN), back-propagation artificial neural network (BP-ANN) and least squares support vector machines (LS-SVM) were applied for the classification and prediction of the samples. Again, the combined data matrix analyzed by the KNN method produced best results (100% correct; prediction set data). Additionally, multiple linear regression (MLR) was utilized to explore any relationship between the organic constituents and the metal elements of the CM samples; the extracted linear regression equations showed that the essential metals as well as some metallic pollutants were related to the organic compounds on the basis of their concentrations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel combined near- and mid-infrared (NIR and MIR) spectroscopic method has been researched and developed for the analysis of complex substances such as the Traditional Chinese Medicine (TCM), Illicium verum Hook. F. (IVHF), and its noxious adulterant, Iuicium lanceolatum A.C. Smith (ILACS). Three types of spectral matrix were submitted for classification with the use of the linear discriminant analysis (LDA) method. The data were pretreated with either the successive projections algorithm (SPA) or the discrete wavelet transform (DWT) method. The SPA method performed somewhat better, principally because it required less spectral features for its pretreatment model. Thus, NIR or MIR matrix as well as the combined NIR/MIR one, were pretreated by the SPA method, and then analysed by LDA. This approach enabled the prediction and classification of the IVHF, ILACS and mixed samples. The MIR spectral data produced somewhat better classification rates than the NIR data. However, the best results were obtained from the combined NIR/MIR data matrix with 95–100% correct classifications for calibration, validation and prediction. Principal component analysis (PCA) of the three types of spectral data supported the results obtained with the LDA classification method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acoustic classification of anurans (frogs) has received increasing attention for its promising application in biological and environment studies. In this study, a novel feature extraction method for frog call classification is presented based on the analysis of spectrograms. The frog calls are first automatically segmented into syllables. Then, spectral peak tracks are extracted to separate desired signal (frog calls) from background noise. The spectral peak tracks are used to extract various syllable features, including: syllable duration, dominant frequency, oscillation rate, frequency modulation, and energy modulation. Finally, a k-nearest neighbor classifier is used for classifying frog calls based on the results of principal component analysis. The experiment results show that syllable features can achieve an average classification accuracy of 90.5% which outperforms Mel-frequency cepstral coefficients features (79.0%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over past few decades, frog species have been experiencing dramatic decline around the world. The reason for this decline includes habitat loss, invasive species, climate change and so on. To better know the status of frog species, classifying frogs has become increasingly important. In this study, acoustic features are investigated for multi-level classification of Australian frogs: family, genus and species, including three families, eleven genera and eighty five species which are collected from Queensland, Australia. For each frog species, six instances are selected from which ten acoustic features are calculated. Then, the multicollinearity between ten features are studied for selecting non-correlated features for subsequent analysis. A decision tree (DT) classifier is used to visually and explicitly determine which acoustic features are relatively important for classifying family, which for genus, and which for species. Finally, a weighted support vector machines (SVMs) classifier is used for the multi- level classification with three most important acoustic features respectively. Our experiment results indicate that using different acoustic feature sets can successfully classify frogs at different levels and the average classification accuracy can be up to 85.6%, 86.1% and 56.2% for family, genus and species respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Being able to accurately predict the risk of falling is crucial in patients with Parkinson’s dis- ease (PD). This is due to the unfavorable effect of falls, which can lower the quality of life as well as directly impact on survival. Three methods considered for predicting falls are decision trees (DT), Bayesian networks (BN), and support vector machines (SVM). Data on a 1-year prospective study conducted at IHBI, Australia, for 51 people with PD are used. Data processing are conducted using rpart and e1071 packages in R for DT and SVM, con- secutively; and Bayes Server 5.5 for the BN. The results show that BN and SVM produce consistently higher accuracy over the 12 months evaluation time points (average sensitivity and specificity > 92%) than DT (average sensitivity 88%, average specificity 72%). DT is prone to imbalanced data so needs to adjust for the misclassification cost. However, DT provides a straightforward, interpretable result and thus is appealing for helping to identify important items related to falls and to generate fallers’ profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective Death certificates provide an invaluable source for cancer mortality statistics; however, this value can only be realised if accurate, quantitative data can be extracted from certificates – an aim hampered by both the volume and variable nature of certificates written in natural language. This paper proposes an automatic classification system for identifying cancer related causes of death from death certificates. Methods Detailed features, including terms, n-grams and SNOMED CT concepts were extracted from a collection of 447,336 death certificates. These features were used to train Support Vector Machine classifiers (one classifier for each cancer type). The classifiers were deployed in a cascaded architecture: the first level identified the presence of cancer (i.e., binary cancer/nocancer) and the second level identified the type of cancer (according to the ICD-10 classification system). A held-out test set was used to evaluate the effectiveness of the classifiers according to precision, recall and F-measure. In addition, detailed feature analysis was performed to reveal the characteristics of a successful cancer classification model. Results The system was highly effective at identifying cancer as the underlying cause of death (F-measure 0.94). The system was also effective at determining the type of cancer for common cancers (F-measure 0.7). Rare cancers, for which there was little training data, were difficult to classify accurately (F-measure 0.12). Factors influencing performance were the amount of training data and certain ambiguous cancers (e.g., those in the stomach region). The feature analysis revealed a combination of features were important for cancer type classification, with SNOMED CT concept and oncology specific morphology features proving the most valuable. Conclusion The system proposed in this study provides automatic identification and characterisation of cancers from large collections of free-text death certificates. This allows organisations such as Cancer Registries to monitor and report on cancer mortality in a timely and accurate manner. In addition, the methods and findings are generally applicable beyond cancer classification and to other sources of medical text besides death certificates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The purpose of this presentation is to outline the relevance of the categorization of the load regime data to assess the functional output and usage of the prosthesis of lower limb amputees. The objectives are • To highlight the need for categorisation of activities of daily living • To present a categorization of load regime applied on residuum, • To present some descriptors of the four types of activity that could be detected, • To provide an example the results for a case. Methods The load applied on the osseointegrated fixation of one transfemoral amputee was recorded using a portable kinetic system for 5 hours. The load applied on the residuum was divided in four types of activities corresponding to inactivity, stationary loading, localized locomotion and directional locomotion as detailed in previously publications. Results The periods of directional locomotion, localized locomotion, and stationary loading occurred 44%, 34%, and 22% of recording time and each accounted for 51%, 38%, and 12% of the duration of the periods of activity, respectively. The absolute maximum force during directional locomotion, localized locomotion, and stationary loading was 19%, 15%, and 8% of the body weight on the anteroposterior axis, 20%, 19%, and 12% on the mediolateral axis, and 121%, 106%, and 99% on the long axis. A total of 2,783 gait cycles were recorded. Discussion Approximately 10% more gait cycles and 50% more of the total impulse than conventional analyses were identified. The proposed categorization and apparatus have the potential to complement conventional instruments, particularly for difficult cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Pheochromocytomas and paragangliomas (PPGLs) are heritable neoplasms that can be classified into gene-expression subtypes corresponding to their underlying specific genetic drivers. Objective: This study aimed to develop a diagnostic and research tool (Pheo-type) capable of classifying PPGL tumors into gene-expression subtypes that could be used to guide and interpret genetic testing, determine surveillance programs, and aid in elucidation of PPGL biology. Design: A compendium of published microarray data representing 205 PPGL tumors was used for the selection of subtype-specific genes that were then translated to the Nanostring gene-expression platform. A support vector machine was trained on the microarray dataset and then tested on an independent Nanostring dataset representing 38 familial and sporadic cases of PPGL of known genotype (RET, NF1, TMEM127, MAX, HRAS, VHL, and SDHx). Different classifier models involving between three and six subtypes were compared for their discrimination potential. Results: A gene set of 46 genes and six endogenous controls was selected representing six known PPGL subtypes; RTK1–3 (RET, NF1, TMEM127, and HRAS), MAX-like, VHL, and SDHx. Of 38 test cases, 34 (90%) were correctly predicted to six subtypes based on the known genotype to gene-expression subtype association. Removal of the RTK2 subtype from training, characterized by an admixture of tumor and normal adrenal cortex, improved the classification accuracy (35/38). Consolidation of RTK and pseudohypoxic PPGL subtypes to four- and then three-class architectures improved the classification accuracy for clinical application. Conclusions: The Pheo-type gene-expression assay is a reliable method for predicting PPGL genotype using routine diagnostic tumor samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enterprise Application Integration (EAI) is a challenging area that is attracting growing attention from the software industry and the research community. A landscape of languages and techniques for EAI has emerged and is continuously being enriched with new proposals from different software vendors and coalitions. However, little or no effort has been dedicated to systematically evaluate and compare these languages and techniques. The work reported in this paper is a first step in this direction. It presents an in-depth analysis of a language, namely the Business Modeling Language, specifically developed for EAI. The framework used for this analysis is based on a number of workflow and communication patterns. This framework provides a basis for evaluating the advantages and drawbacks of EAI languages with respect to recurrent problems and situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent times, the improved levels of accuracy obtained by Automatic Speech Recognition (ASR) technology has made it viable for use in a number of commercial products. Unfortunately, these types of applications are limited to only a few of the world’s languages, primarily because ASR development is reliant on the availability of large amounts of language specific resources. This motivates the need for techniques which reduce this language-specific, resource dependency. Ideally, these approaches should generalise across languages, thereby providing scope for rapid creation of ASR capabilities for resource poor languages. Cross Lingual ASR emerges as a means for addressing this need. Underpinning this approach is the observation that sound production is largely influenced by the physiological construction of the vocal tract, and accordingly, is human, and not language specific. As a result, a common inventory of sounds exists across languages; a property which is exploitable, as sounds from a resource poor, target language can be recognised using models trained on resource rich, source languages. One of the initial impediments to the commercial uptake of ASR technology was its fragility in more challenging environments, such as conversational telephone speech. Subsequent improvements in these environments has gained consumer confidence. Pragmatically, if cross lingual techniques are to considered a viable alternative when resources are limited, they need to perform under the same types of conditions. Accordingly, this thesis evaluates cross lingual techniques using two speech environments; clean read speech and conversational telephone speech. Languages used in evaluations are German, Mandarin, Japanese and Spanish. Results highlight that previously proposed approaches provide respectable results for simpler environments such as read speech, but degrade significantly when in the more taxing conversational environment. Two separate approaches for addressing this degradation are proposed. The first is based on deriving better target language lexical representation, in terms of the source language model set. The second, and ultimately more successful approach, focuses on improving the classification accuracy of context-dependent (CD) models, by catering for the adverse influence of languages specific phonotactic properties. Whilst the primary research goal in this thesis is directed towards improving cross lingual techniques, the catalyst for investigating its use was based on expressed interest from several organisations for an Indonesian ASR capability. In Indonesia alone, there are over 200 million speakers of some Malay variant, provides further impetus and commercial justification for speech related research on this language. Unfortunately, at the beginning of the candidature, limited research had been conducted on the Indonesian language in the field of speech science, and virtually no resources existed. This thesis details the investigative and development work dedicated towards obtaining an ASR system with a 10000 word recognition vocabulary for the Indonesian language.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper suggests an approach for finding an appropriate combination of various parameters for extracting texture features (e.g. choice of spectral band for extracting texture feature, size of the moving window, quantization level of the image, and choice of texture feature etc.) to be used in the classification process. Gray level co-occurrence matrix (GLCM) method has been used for extracting texture from remotely sensed satellite image. Results of the classification of an Indian urban environment using spatial property (texture), derived from spectral and multi-resolution wavelet decomposed images have also been reported. A multivariate data analysis technique called ‘conjoint analysis’ has been used in the study to analyze the relative importance of these parameters. Results indicate that the choice of texture feature and window size have higher relative importance in the classification process than quantization level or the choice of image band for extracting texture feature. In case of texture features derived using wavelet decomposed image, the parameter ‘decomposition level’ has almost equal relative importance as the size of moving window and the decomposition of images up to level one is sufficient and there is no need to go for further decomposition. It was also observed that the classification incorporating texture features improves the overall classification accuracy in a statistically significant manner in comparison to pure spectral classification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within online learning communities, receiving timely and meaningful insights into the quality of learning activities is an important part of an effective educational experience. Commonly adopted methods – such as the Community of Inquiry framework – rely on manual coding of online discussion transcripts, which is a costly and time consuming process. There are several efforts underway to enable the automated classification of online discussion messages using supervised machine learning, which would enable the real-time analysis of interactions occurring within online learning communities. This paper investigates the importance of incorporating features that utilise the structure of on-line discussions for the classification of "cognitive presence" – the central dimension of the Community of Inquiry framework focusing on the quality of students' critical thinking within online learning communities. We implemented a Conditional Random Field classification solution, which incorporates structural features that may be useful in increasing classification performance over other implementations. Our approach leads to an improvement in classification accuracy of 5.8% over current existing techniques when tested on the same dataset, with a precision and recall of 0.630 and 0.504 respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this presentation, I reflect upon the global landscape surrounding the governance and classification of media content, at a time of rapid change in media platforms and services for content production and distribution, and contested cultural and social norms. I discuss the tensions and contradictions arising in the relationship between national, regional and global dimensions of media content distribution, as well as the changing relationships between state and non-state actors. These issues will be explored through consideration of issues such as: recent debates over film censorship; the review of the National Classification Scheme conducted by the Australian Law Reform Commission; online controversies such as the future of the Reddit social media site; and videos posted online by the militant group ISIS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative behaviour analysis requires the classification of behaviour to produce the basic data. In practice, much of this work will be performed by multiple observers, and maximising inter-observer consistency is of particular importance. Another discipline where consistency in classification is vital is biological taxonomy. A classification tool of great utility, the binary key, is designed to simplify the classification decision process and ensure consistent identification of proper categories. We show how this same decision-making tool - the binary key - can be used to promote consistency in the classification of behaviour. The construction of a binary key also ensures that the categories in which behaviour is classified are complete and non-overlapping. We discuss the general principles of design of binary keys, and illustrate their construction and use with a practical example from education research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To examine the reliability of work-related activity coding for injury-related hospitalisations in Australia. Method: A random sample of 4373 injury-related hospital separations from 1 July 2002 to 30 June 2004 were obtained from a stratified random sample of 50 hospitals across 4 states in Australia. From this sample, cases were identified as work-related if they contained an ICD-10-AM work-related activity code (U73) allocated by either: (i) the original coder; (ii) an independent auditor, blinded to the original code; or (iii) a research assistant, blinded to both the original and auditor codes, who reviewed narrative text extracted from the medical record. The concordance of activity coding and number of cases identified as work-related using each method were compared. Results: Of the 4373 cases sampled, 318 cases were identified as being work-related using any of the three methods for identification. The original coder identified 217 and the auditor identified 266 work-related cases (68.2% and 83.6% of the total cases identified, respectively). Around 10% of cases were only identified through the text description review. The original coder and auditor agreed on the assignment of work-relatedness for 68.9% of cases. Conclusions and Implications: The current best estimates of the frequency of hospital admissions for occupational injury underestimate the burden by around 32%. This is a substantial underestimate that has major implications for public policy, and highlights the need for further work on improving the quality and completeness of routine, administrative data sources for a more complete identification of work-related injuries.