105 resultados para tin
Resumo:
This research shows that gross pollutant traps (GPTs) continue to play an important role in preventing visible street waste—gross pollutants—from contaminating the environment. The demand for these GPTs calls for stringent quality control and this research provides a foundation to rigorously examine the devices. A novel and comprehensive testing approach to examine a dry sump GPT was developed. The GPT is designed with internal screens to capture gross pollutants—organic matter and anthropogenic litter. This device has not been previously investigated. Apart from the review of GPTs and gross pollutant data, the testing approach includes four additional aspects to this research, which are: field work and an historical overview of street waste/stormwater pollution, calibration of equipment, hydrodynamic studies and gross pollutant capture/retention investigations. This work is the first comprehensive investigation of its kind and provides valuable practical information for the current research and any future work pertaining to the operations of GPTs and management of street waste in the urban environment. Gross pollutant traps—including patented and registered designs developed by industry—have specific internal configurations and hydrodynamic separation characteristics which demand individual testing and performance assessments. Stormwater devices are usually evaluated by environmental protection agencies (EPAs), professional bodies and water research centres. In the USA, the American Society of Civil Engineers (ASCE) and the Environmental Water Resource Institute (EWRI) are examples of professional and research organisations actively involved in these evaluation/verification programs. These programs largely rely on field evaluations alone that are limited in scope, mainly for cost and logistical reasons. In Australia, evaluation/verification programs of new devices in the stormwater industry are not well established. The current limitations in the evaluation methodologies of GPTs have been addressed in this research by establishing a new testing approach. This approach uses a combination of physical and theoretical models to examine in detail the hydrodynamic and capture/retention characteristics of the GPT. The physical model consisted of a 50% scale model GPT rig with screen blockages varying from 0 to 100%. This rig was placed in a 20 m flume and various inlet and outflow operating conditions were modelled on observations made during the field monitoring of GPTs. Due to infrequent cleaning, the retaining screens inside the GPTs were often observed to be blocked with organic matter. Blocked screens can radically change the hydrodynamic and gross pollutant capture/retention characteristics of a GPT as shown from this research. This research involved the use of equipment, such as acoustic Doppler velocimeters (ADVs) and dye concentration (Komori) probes, which were deployed for the first time in a dry sump GPT. Hence, it was necessary to rigorously evaluate the capability and performance of these devices, particularly in the case of the custom made Komori probes, about which little was known. The evaluation revealed that the Komori probes have a frequency response of up to 100 Hz —which is dependent upon fluid velocities—and this was adequate to measure the relevant fluctuations of dye introduced into the GPT flow domain. The outcome of this evaluation resulted in establishing methodologies for the hydrodynamic measurements and gross pollutant capture/retention experiments. The hydrodynamic measurements consisted of point-based acoustic Doppler velocimeter (ADV) measurements, flow field particle image velocimetry (PIV) capture, head loss experiments and computational fluid dynamics (CFD) simulation. The gross pollutant capture/retention experiments included the use of anthropogenic litter components, tracer dye and custom modified artificial gross pollutants. Anthropogenic litter was limited to tin cans, bottle caps and plastic bags, while the artificial pollutants consisted of 40 mm spheres with a range of four buoyancies. The hydrodynamic results led to the definition of global and local flow features. The gross pollutant capture/retention results showed that when the internal retaining screens are fully blocked, the capture/retention performance of the GPT rapidly deteriorates. The overall results showed that the GPT will operate efficiently until at least 70% of the screens are blocked, particularly at high flow rates. This important finding indicates that cleaning operations could be more effectively planned when the GPT capture/retention performance deteriorates. At lower flow rates, the capture/retention performance trends were reversed. There is little difference in the poor capture/retention performance between a fully blocked GPT and a partially filled or empty GPT with 100% screen blockages. The results also revealed that the GPT is designed with an efficient high flow bypass system to avoid upstream blockages. The capture/retention performance of the GPT at medium to high inlet flow rates is close to maximum efficiency (100%). With regard to the design appraisal of the GPT, a raised inlet offers a better capture/retention performance, particularly at lower flow rates. Further design appraisals of the GPT are recommended.
Resumo:
In 2006, the Faculty of Built Environment and Engineering introduced the first faculty wide unit dedicated to sustainability at any Australian University. BEB200 Introducing Sustainability has semester enrolments of up to 1500 students. Instruments such as lectures, readings, field visits, group projects and structured tutorial activities are used and have evolved over the last five years in response to student and staff feedback and attempts to better engage students. More than seventy staff have taught in the unit, which is in its final offering in this form in 2010. This paper reflects on the experiences of five academics who have played key roles in the development and teaching of this unit over the last five years. They argue that sustainability is a paradigm that allows students to explore other ways of knowing as they engage with issues in a complex world, not an end in itself. From the students’ perspective, grappling with such issues enables them to move towards a context in which they can understand their own discipline and its role in the contradictory and rapidly changing professional world. Insights are offered into how sustainability units may be developed in the future.
Resumo:
The process of becoming numerate begins in the early years. According to Vygotskian theory (1978), teachers are More Knowledgeable Others who provide and support learning experiences that influence children’s mathematical learning. This paper reports on research that investigates three early childhood teachers mathematics content knowledge. An exploratory, single case study utilised data collected from interviews, and email correspondence to investigate the teachers’ mathematics content knowledge. The data was reviewed according to three analytical strategies: content analysis, pattern matching, and comparative analysis. Findings indicated there was variation in teachers’ content knowledge across the five mathematical strands and that teachers might not demonstrate the depth of content knowledge that is expected of four year specially trained early years’ teachers. A significant factor that appeared to influence these teachers’ content knowledge was their teaching experience. Therefore, an avenue for future research is the investigation of factors that influence teachers’ content numeracy knowledge.
Resumo:
Planning on utilization of train-set is one of the key tasks of transport organization for passenger dedicated railway in China. It also has strong relationships with timetable scheduling and operation plans at a station. To execute such a task in a railway hub pooling multiple railway lines, the characteristics of multiple routing for train-set is discussed in term of semicircle of train-sets' turnover. In programming the described problem, the minimum dwell time is selected as the objectives with special derive constraints of the train-set's dispatch, the connecting conditions, the principle of uniqueness for train-sets, and the first plus for connection in the same direction based on time tolerance σ. A compact connection algorithm based on time tolerance is then designed. The feasibility of the model and the algorithm is proved by the case study. The result indicates that the circulation model and algorithm about multiple routing can deal with the connections between the train-sets of multiple directions, and reduce the train's pulling in or leaving impact on the station's throat.
Resumo:
Technology-mediated collaboration process has been extensively studied for over a decade. Most applications with collaboration concepts reported in the literature focus on enhancing efficiency and effectiveness of the decision-making processes in objective and well-structured workflows. However, relatively few previous studies have investigated the applications of collaboration schemes to problems with subjective and unstructured nature. In this paper, we explore a new intelligent collaboration scheme for fashion design which, by nature, relies heavily on human judgment and creativity. Techniques such as multicriteria decision making, fuzzy logic, and artificial neural network (ANN) models are employed. Industrial data sets are used for the analysis. Our experimental results suggest that the proposed scheme exhibits significant improvement over the traditional method in terms of the time–cost effectiveness, and a company interview with design professionals has confirmed its effectiveness and significance.
Resumo:
In open railway markets, coordinating train schedules at an interchange station requires negotiation between two independent train operating companies to resolve their operational conflicts. This paper models the stakeholders as software agents and proposes an agent negotiation model to study their interaction. Three negotiation strategies have been devised to represent the possible objectives of the stakeholders, and they determine the behavior in proposing offers to the proponent. Empirical simulation results confirm that the use of the proposed negotiation strategies lead to outcomes that are consistent with the objectives of the stakeholders.
Resumo:
With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the students were able to effectively relate their problem solving strategies to real-world contexts. The qualitative study involved 23 Grade 6 students participating in robotics activities. The study included data collected from researcher observations of student problem solving discussions, collected software programs, and data from a student completed questionnaire. Results from the study indicated that the robotic activities assisted students to reflect on the problem-solving decisions they made. The study also highlighted that the students were able to relate their problem solving strategies to real-world contexts. The study demonstrated that while LEGO robotics can be considered useful problem solving tools in the classroom, careful teacher scaffolding needs to be implemented in regards to correlating LEGO with authentic problem solving. Further research in regards to how teachers can best embed real-world contexts into effective robotics lessons is recommended.
Resumo:
In 2007 I introduced short-format educational podcast resources that reinforced conceptual teaching and learning in an interdisciplinary tertiary science study area (biochemistry). This study aims to determine student attitudes to the perceived usefulness and benefit of short-format educational podcasts, and presents the findings (qualitative and quantitative) from surveys obtained from three offerings of the science teaching unit (2007, 2008 and 2009). Podcasts were recorded (MP3 audio files) separately from the instructive lecture sessions, and subsequent to the weekly lecture, short-format podcasts summarising the key learning objectives were integrated within the resources presented through the students learning management system (Blackboard). The vast majority (>88%) of students utilised the podcast resources, indicating a high level of acceptance and uptake for this portable educational technology. The respondents reported that podcasts focused their attention to core learning concepts and supported their understanding and learning of the lecture material. Furthermore, the data showed that respondents agreed strongly that podcasts assisted with study and revision for examinations and, somewhat surprisingly, there was a perception that podcasts positively impacted on examination performance. Overall, student users perceived that podcasting is as an effective and valuable educational tool that offers convenience and flexibility for their learning and understanding of a tertiary science study area, such as biochemistry.
Resumo:
Adolescents are both aware of and have the impetuous to exploit aspects of Science, Technology, Engineering and Mathematics (STEM) within their personal lives. Whether they are surfing, cycling, skateboarding or shopping, STEM concepts impact their lives. However science, mathematics, engineering and technology are still treated in the classroom as separate fragmented entities in the educational environment where most classroom talk is seemingly incomprehensible to the adolescent senses. The aim of this study was to examine the experiences of young adolescents with the aim of transforming school learning at least of science into meaningful experiences that connected with their lives using a self-study approach. Over a 12-month period, the researcher, an experienced secondary-science teacher, designed, implemented and documented a range of pedagogical practices with his Year-7 secondary science class. Data for this case study included video recordings, journals, interviews and surveys of students. By setting an environment empathetic to adolescent needs and understandings, students were able to actively explore phenomena collaboratively through developmentally appropriate experiences. Providing a more contextually relevant environment fostered meta-cognitive practices, encouraged new learning through open dialogue, multi-modal representations and assessments that contributed to building upon, re-affirming, or challenging both the students' prior learning and the teacher’s pedagogical content knowledge. A significant outcome of this study was the transformative experiences of an insider, the teacher as researcher, whose reflections provided an authentic model for reforming pedagogy in STEM classes.
Resumo:
The indecision surrounding the definition of Technology extends to the classroom as not knowing what a subject “is” affects how it is taught. Similarly, its relative newness – and consequent lack of habitus in school settings - means that it is still struggling to find its own place in the curriculum as well as resolve its relationship with more established subject domains, particularly Science and Mathematics. The guidance from syllabus documents points to open-ended student-directed projects where extant studies indicate a more common experience of teacher –directed activities and an emphasis on product over process. There are issues too for researchers in documenting classroom observations and in analysing teacher practice in new learning environments. This paper presents a framework for defining and mapping classroom practice and for attempting to describe the social practice in the Technology classroom. The framework is a bricolage which draws on contemporary research. More formally, the development of the framework is consonant with the aim of design-based research to develop a flexible, adaptive and generalisable theory to better understanding a teaching domain where promise is not seen to match current reality. The framework may also inform emergent approaches to STEM (Science, Technology, Education and Mathematics) in education.
Resumo:
In both Australia and Norway and through a number of Technology projects conducted since 2007, the authors – together and with other collaborators - have attempted to create positive learning environments supported by Web 2.0 communication tools. Through protected public sites and the oz-Teachernet [http://www.otn.edu.au], we have consistently chosen to use blogs to support the social construction of knowledge, that is, to allow students the opportunity to discuss, share and collaborate on their classroom activities and engagement with Technology artefacts and processes. Through comparisons with findings from a small-scale project in Norway and a large-scale project in Australia, this paper will argue for the potential of discussion through blogs but recommend that the purposeful use of scientific language in student communication will not occur without teacher intervention and scaffolding.
Resumo:
This study explores the development of a coding system for analysing test questions in two context-based chemistry exams. We describe our unique analytical procedures before contrasting the data from both tests. Our findings indicate that when a new curriculum is developed such as a context-based curriculum, teachers are required to combine the previously separate domains of context and concept to develop contextualised assessment. We argue that constructing contextualised assessment items requires teachers to view concepts and context as interconnected rather than as separate entities that may polarise scientific endeavour. Implications for practice, curriculum and assessment-development in context-based courses are proposed.
Resumo:
Fiber Bragg grating (FBG) sensor technology has been attracting substantial industrial interests for the last decade. FBG sensors have seen increasing acceptance and widespread use for structural sensing and health monitoring applications in composites, civil engineering, aerospace, marine, oil & gas, and smart structures. One transportation system that has been benefitted tremendously from this technology is railways, where it is of the utmost importance to understand the structural and operating conditions of rails as well as that of freight and passenger service cars to ensure safe and reliable operation. Fiberoptic sensors, mostly in the form of FBGs, offer various important characteristics, such as EMI/RFI immunity, multiplexing capability, and very long-range interrogation (up to 230 km between FBGs and measurement unit), over the conventional electrical sensors for the distinctive operational conditions in railways. FBG sensors are unique from other types of fiber-optic sensors as the measured information is wavelength-encoded, which provides self-referencing and renders their signals less susceptible to intensity fluctuations. In addition, FBGs are reflective sensors that can be interrogated from either end, providing redundancy to FBG sensing networks. These two unique features are particularly important for the railway industry where safe and reliable operations are the major concerns. Furthermore, FBGs are very versatile and transducers based on FBGs can be designed to measure a wide range of parameters such as acceleration and inclination. Consequently, a single interrogator can deal with a large number of FBG sensors to measure a multitude of parameters at different locations that spans over a large area.
Resumo:
Train delay is one of the most important indexes to evaluate the service quality of the railway. Because of the interactions of movement among trains, a delayed train may conflict with trains scheduled on other lines at junction area. Train that loses conflict may be forced to stop or slow down because of restrictive signals, which consequently leads to the loss of run-time and probably enlarges more delays. This paper proposes a time-saving train control method to recover delays as soon as possible. In the proposed method, golden section search is adopted to identify the optimal train speed at the expected time of restrictive signal aspect upgrades, which enables the train to depart from the conflicting area as soon as possible. A heuristic method is then developed to attain the advisory train speed profile assisting drivers in train control. Simulation study indicates that the proposed method enables the train to recover delays as soon as possible in case of disturbances at railway junctions, in comparison with the traditional maximum traction strategy and the green wave strategy.
Resumo:
This paper discusses the conceptualization, implementation and initial findings of a professional learning program (PLP) which used LEGO® robotics as one of the tools for teaching general technology (GT)in China’s secondary schools. The program encouraged teachers to design learning environments that can be realistic, authentic, engaging and fun. 100 general technology teachers from high schools in 30 provinces of China participated. The program aimed to transform teacher classroom practice, change their beliefs and attitudes, allow teachers to reflect deeply on what they do and in turn to provide their students with meaningful learning. Preliminary findings indicate that these teachers had a huge capacity for change. They were open-minded and absorbed new ways of learning and teaching. They became designers who developed innovative models of learning which incorporated learning processes that effectively used LEGO® robotics as one of the more creative tools for teaching GT.