156 resultados para step utility
Resumo:
In this paper we present a sequential Monte Carlo algorithm for Bayesian sequential experimental design applied to generalised non-linear models for discrete data. The approach is computationally convenient in that the information of newly observed data can be incorporated through a simple re-weighting step. We also consider a flexible parametric model for the stimulus-response relationship together with a newly developed hybrid design utility that can produce more robust estimates of the target stimulus in the presence of substantial model and parameter uncertainty. The algorithm is applied to hypothetical clinical trial or bioassay scenarios. In the discussion, potential generalisations of the algorithm are suggested to possibly extend its applicability to a wide variety of scenarios
Resumo:
This article considers the decision of Robin DCJ in CTP Manager Limited v Ascent Pty Ltd [2011] QDC 74 and the likely impact of the decision on the practice in the court registries in similar circumstances.
Resumo:
Background The increasing popularity and use of the internet makes it an attractive option for providing health information and treatment, including alcohol/other drug use. There is limited research examining how people identify and access information about alcohol or other drug (AOD) use online, or how they assess the usefulness of the information presented. This study examined the strategies that individuals used to identify and navigate a range of AOD websites, along with the attitudes concerning presentation and content. Methods Members of the general community in Brisbane and Roma (Queensland, Australia) were invited to participate in a 30-minute search of the internet for sites related to AOD use, followed by a focus group discussion. Fifty one subjects participated in the study across nine focus groups. Results Participants spent a maximum of 6.5 minutes on any one website, and less if the user was under 25 years of age. Time spent was as little as 2 minutes if the website was not the first accessed. Participants recommended that AOD-related websites should have an engaging home or index page, which quickly and accurately portrayed the site’s objectives, and provided clear site navigation options. Website content should clearly match the title and description of the site that is used by internet search engines. Participants supported the development of a portal for AOD websites, suggesting that it would greatly facilitate access and navigation. Treatment programs delivered online were initially viewed with caution. This appeared to be due to limited understanding of what constituted online treatment, including its potential efficacy. Conclusions A range of recommendations arise from this study regarding the design and development of websites, particularly those related to AOD use. These include prudent use of text and information on any one webpage, the use of graphics and colours, and clear, uncluttered navigation options. Implications for future website development are discussed.
Resumo:
Background Screening tests of basic cognitive status or ‘mental state’ have been shown to predict mortality and functional outcomes in adults. This study examined the relationship between mental state and outcomes in children with type 1 diabetes. Objective We aimed to determine whether mental state at diagnosis predicts longer term cognitive function of children with a new diagnosis of type 1 diabetes. Methods Mental state of 87 patients presenting with newly diagnosed type 1 diabetes was assessed using the School-Years Screening Test for the Evaluation of Mental Status. Cognitive abilities were assessed 1 wk and 6 months postdiagnosis using standardized tests of attention, memory, and intelligence. Results Thirty-seven children (42.5%) had reduced mental state at diagnosis. Children with impaired mental state had poorer attention and memory in the week following diagnosis, and, after controlling for possible confounding factors, significantly lower IQ at 6 months compared to those with unimpaired mental state (p < 0.05). Conclusions Cognition is impaired acutely in a significant number of children presenting with newly diagnosed type 1 diabetes. Mental state screening is an effective method of identifying children at risk of ongoing cognitive difficulties in the days and months following diagnosis. Clinicians may consider mental state screening for all newly diagnosed diabetic children to identify those at risk of cognitive sequelae.
Resumo:
No matter how aspirational they are, management accountants face a series of roadblocks in the course of building careers in organisations. Experts reveal the four key obstacles that need to be addressed in the course of becoming global leaders.
Resumo:
A substantial body of literature exists identifying factors contributing to under-performing Enterprise Resource Planning systems (ERPs), including poor communication, lack of executive support and user dissatisfaction (Calisir et al., 2009). Of particular interest is Momoh et al.’s (2010) recent review identifying poor data quality (DQ) as one of nine critical factors associated with ERP failure. DQ is central to ERP operating processes, ERP facilitated decision-making and inter-organizational cooperation (Batini et al., 2009). Crucial in ERP contexts is that the integrated, automated, process driven nature of ERP data flows can amplify DQ issues, compounding minor errors as they flow through the system (Haug et al., 2009; Xu et al., 2002). However, the growing appreciation of the importance of DQ in determining ERP success lacks research addressing the relationship between stakeholders’ requirements and perceptions of ERP DQ, perceived data utility and the impact of users’ treatment of data on ERP outcomes.
Resumo:
Introduction: The ability to regulate joint stiffness and coordinate movement during landing when impaired by muscle fatigue has important implications for knee function. Unfortunately, the literature examining fatigue effects on landing mechanics suffers from a lack of consensus. Inconsistent results can be attributed to variable fatigue models, as well as grouping variable responses between individuals when statistically detecting differences between conditions. There remains a need to examine fatigue effects on knee function during landing with attention to these methodological limitations. Aim: The purpose of this study therefore, was to examine the effects of isokinetic fatigue on pre-impact muscle activity and post-impact knee mechanics during landing using singlesubject analysis. Methodology: Sixteen male university students (22.6+3.2 yrs; 1.78+0.07 m; 75.7+6.3 kg) performed maximal concentric and eccentric knee extensions in a reciprocal manner on an isokinetic dynamometer and step-landing trials on 2 occasions. On the first occasion each participant performed 20 step-landing trials from a knee-high platform followed by 75 maximal contractions on the isokinetic dynamometer. The isokinetic data was used to calculate the operational definition of fatigue. On the second occasion, with a minimum rest of 14 days, participants performed 2 sets of 20 step landing trials, followed by isokinetic exercise until the operational definition of fatigue was met and a final post-fatigue set of 20 step-landing trials. Results: Single-subject analyses revealed that isokinetic fatigue of the quadriceps induced variable responses in pre impact activation of knee extensors and flexors (frequency, onset timing and amplitude) and post-impact knee mechanics(stiffness and coordination). In general however, isokinetic fatigue induced sig nificant (p<0.05) reductions in quadriceps activation frequency, delayed onset and increased amplitude. In addition, knee stiffness was significantly (p<0.05) increased in some individuals, as well as impaired sagittal coordination. Conclusions: Pre impact activation and post-impact mechanics were adjusted in patterns that were unique to the individual, which could not be identified using traditional group-based statistical analysis. The results suggested that individuals optimised knee function differently to satisfy competing demands, such as minimising energy expenditure, as well as maximising joint stability and sensory information.
Resumo:
Introduction: Evidence concerning the alteration of knee function during landing suffers from a lack of consensus. This uncertainty can be attributed to methodological flaws, particularly in relation to the statistical analysis of variable human movement data. Aim: The aim of this study was to compare single-subject and group analysis in quantifying alterations in the magnitude and within-participant variability of knee mechanics during a step landing task. Methods: A group of healthy men (N = 12) stepped-down from a knee-high platform for 60 consecutive trials, each trial separated by a 1-minute rest. The magnitude and within-participant variability of sagittal knee stiffness and coordination of the landing leg during the immediate postimpact period were evaluated. Coordination of the knee was quantified in the sagittal plane by calculating the mean absolute relative phase of sagittal shank and thigh motion (MARP1) and between knee rotation and knee flexion (MARP2). Changes across trials were compared between both group and single-subject statistical analyses. Results: The group analysis detected significant reductions in MARP1 magnitude. However, the single-subject analyses detected changes in all dependent variables, which included increases in variability with task repetition. Between-individual variation was also present in the timing, size and direction of alterations to task repetition. Conclusion: The results have important implications for the interpretation of existing information regarding the adaptation of knee mechanics to interventions such as fatigue, footwear or landing height. It is proposed that a familiarisation session be incorporated in future experiments on a single-subject basis prior to an intervention.
Resumo:
Quality oriented management systems and methods have become the dominant business and governance paradigm. From this perspective, satisfying customers’ expectations by supplying reliable, good quality products and services is the key factor for an organization and even government. During recent decades, Statistical Quality Control (SQC) methods have been developed as the technical core of quality management and continuous improvement philosophy and now are being applied widely to improve the quality of products and services in industrial and business sectors. Recently SQC tools, in particular quality control charts, have been used in healthcare surveillance. In some cases, these tools have been modified and developed to better suit the health sector characteristics and needs. It seems that some of the work in the healthcare area has evolved independently of the development of industrial statistical process control methods. Therefore analysing and comparing paradigms and the characteristics of quality control charts and techniques across the different sectors presents some opportunities for transferring knowledge and future development in each sectors. Meanwhile considering capabilities of Bayesian approach particularly Bayesian hierarchical models and computational techniques in which all uncertainty are expressed as a structure of probability, facilitates decision making and cost-effectiveness analyses. Therefore, this research investigates the use of quality improvement cycle in a health vii setting using clinical data from a hospital. The need of clinical data for monitoring purposes is investigated in two aspects. A framework and appropriate tools from the industrial context are proposed and applied to evaluate and improve data quality in available datasets and data flow; then a data capturing algorithm using Bayesian decision making methods is developed to determine economical sample size for statistical analyses within the quality improvement cycle. Following ensuring clinical data quality, some characteristics of control charts in the health context including the necessity of monitoring attribute data and correlated quality characteristics are considered. To this end, multivariate control charts from an industrial context are adapted to monitor radiation delivered to patients undergoing diagnostic coronary angiogram and various risk-adjusted control charts are constructed and investigated in monitoring binary outcomes of clinical interventions as well as postintervention survival time. Meanwhile, adoption of a Bayesian approach is proposed as a new framework in estimation of change point following control chart’s signal. This estimate aims to facilitate root causes efforts in quality improvement cycle since it cuts the search for the potential causes of detected changes to a tighter time-frame prior to the signal. This approach enables us to obtain highly informative estimates for change point parameters since probability distribution based results are obtained. Using Bayesian hierarchical models and Markov chain Monte Carlo computational methods, Bayesian estimators of the time and the magnitude of various change scenarios including step change, linear trend and multiple change in a Poisson process are developed and investigated. The benefits of change point investigation is revisited and promoted in monitoring hospital outcomes where the developed Bayesian estimator reports the true time of the shifts, compared to priori known causes, detected by control charts in monitoring rate of excess usage of blood products and major adverse events during and after cardiac surgery in a local hospital. The development of the Bayesian change point estimators are then followed in a healthcare surveillances for processes in which pre-intervention characteristics of patients are viii affecting the outcomes. In this setting, at first, the Bayesian estimator is extended to capture the patient mix, covariates, through risk models underlying risk-adjusted control charts. Variations of the estimator are developed to estimate the true time of step changes and linear trends in odds ratio of intensive care unit outcomes in a local hospital. Secondly, the Bayesian estimator is extended to identify the time of a shift in mean survival time after a clinical intervention which is being monitored by riskadjusted survival time control charts. In this context, the survival time after a clinical intervention is also affected by patient mix and the survival function is constructed using survival prediction model. The simulation study undertaken in each research component and obtained results highly recommend the developed Bayesian estimators as a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances as well as industrial and business contexts. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The empirical results and simulations indicate that the Bayesian estimators are a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The advantages of the Bayesian approach seen in general context of quality control may also be extended in the industrial and business domains where quality monitoring was initially developed.
Resumo:
This short article summarises some of the proposed reforms to surrogacy laws in Queensland, suggested by the Liberal National Party in 2012. The paper outlines some of the main objections that could be voiced in response to the proposed changes to the law.
Resumo:
Background: For those in the field of managing diabetic complications, the accurate diagnosis and monitoring of diabetic peripheral neuropathy (DPN) continues to be a challenge. Assessment of sub-basal corneal nerve morphology has recently shown promise as a novel ophthalmic marker for the detection of DPN. Methods: Two hundred and thirty-one individuals with diabetes with predominantly mild or no neuropathy and 61 controls underwent evaluation of diabetic neuropathy symptom score, neuropathy disability score, testing with 10 g monofilament, quantitative sensory testing (warm, cold, vibration detection) and nerve conduction studies. Corneal nerve fibre length, branch density and tortuosity were measured using corneal confocal microscopy. Differences in corneal nerve morphology between individuals with and without DPN and controls were investigated using analysis of variance and correlations were determined between corneal morphology and established tests of, and risk factors for, DPN. Results: Corneal nerve fibre length was significantly reduced in diabetic individuals with mild DPN compared with both controls (p < 0.001) and diabetic individuals without DPN (p = 0.012). Corneal nerve branch density was significantly reduced in individuals with mild DPN compared with controls (p = 0.032). Corneal nerve fibre tortuosity did not show significant differences. Corneal nerve fibre length and corneal nerve branch density showed modest correlations to most measures of neuropathy, with the strongest correlations to nerve conduction study parameters (r = 0.15 to 0.25). Corneal nerve fibre tortuosity showed only a weak correlation to the vibration detection threshold. Corneal nerve fibre length was inversely correlated to glycated haemoglobin (r = -0.24) and duration of diabetes (r = -0.20). Conclusion: Assessment of corneal nerve morphology is a non-invasive, rapid test capable of showing differences between individuals with and without DPN. Corneal nerve fibre length shows the strongest associations with other diagnostic tests of neuropathy and with established risk factors for neuropathy.
Resumo:
3D models of long bones are being utilised for a number of fields including orthopaedic implant design. Accurate reconstruction of 3D models is of utmost importance to design accurate implants to allow achieving a good alignment between two bone fragments. Thus for this purpose, CT scanners are employed to acquire accurate bone data exposing an individual to a high amount of ionising radiation. Magnetic resonance imaging (MRI) has been shown to be a potential alternative to computed tomography (CT) for scanning of volunteers for 3D reconstruction of long bones, essentially avoiding the high radiation dose from CT. In MRI imaging of long bones, the artefacts due to random movements of the skeletal system create challenges for researchers as they generate inaccuracies in the 3D models generated by using data sets containing such artefacts. One of the defects that have been observed during an initial study is the lateral shift artefact occurring in the reconstructed 3D models. This artefact is believed to result from volunteers moving the leg during two successive scanning stages (the lower limb has to be scanned in at least five stages due to the limited scanning length of the scanner). As this artefact creates inaccuracies in the implants designed using these models, it needs to be corrected before the application of 3D models to implant design. Therefore, this study aimed to correct the lateral shift artefact using 3D modelling techniques. The femora of five ovine hind limbs were scanned with a 3T MRI scanner using a 3D vibe based protocol. The scanning was conducted in two halves, while maintaining a good overlap between them. A lateral shift was generated by moving the limb several millimetres between two scanning stages. The 3D models were reconstructed using a multi threshold segmentation method. The correction of the artefact was achieved by aligning the two halves using the robust iterative closest point (ICP) algorithm, with the help of the overlapping region between the two. The models with the corrected artefact were compared with the reference model generated by CT scanning of the same sample. The results indicate that the correction of the artefact was achieved with an average deviation of 0.32 ± 0.02 mm between the corrected model and the reference model. In comparison, the model obtained from a single MRI scan generated an average error of 0.25 ± 0.02 mm when compared with the reference model. An average deviation of 0.34 ± 0.04 mm was seen when the models generated after the table was moved were compared to the reference models; thus, the movement of the table is also a contributing factor to the motion artefacts.