232 resultados para signalling mechanisms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enterprise development and its contribution to societal and economic outcomes are well known. However, limited research into microenterprises and the practices of microfinance and microcredit in developing countries has been carried out. This chapter presents the findings of research based on six years of engagement with the microentrepreneurs of Beira in Mozambique and suggests a model for responsible and sustainable support for enterprise development in developing economies. Building on semistructured interviews, observation, and participatory action research, this research project articulates a new approach supportive of enterprise development, as a process of cocreation with local people and based on sustainability principles. These findings are part of a longitudinal study of the successes and failures of small enterprises and their impact on social and economic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell invasion involves a population of cells which are motile and proliferative. Traditional discrete models of proliferation involve agents depositing daughter agents on nearest- neighbor lattice sites. Motivated by time-lapse images of cell invasion, we propose and analyze two new discrete proliferation models in the context of an exclusion process with an undirected motility mechanism. These discrete models are related to a family of reaction- diffusion equations and can be used to make predictions over a range of scales appropriate for interpreting experimental data. The new proliferation mechanisms are biologically relevant and mathematically convenient as the continuum-discrete relationship is more robust for the new proliferation mechanisms relative to traditional approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Flat Bed Rail Wagon (FBRW) has been proposed as an alternative solution for replacing bridges on low traffic volume roads. The subject matter for this paper is to investigate the impediment to load transfer from cross girders to main girder, through visually identifiable structural flaws. Namely, the effect of having large openings at close proximity to the connection of the main girder to the cross girder of a FBRW was examined. It was clear that openings locally reduce the section modulus of the secondary members; however it was unclear how these reductions would affect the load transfer to the main girder. The results are presented through modeling grillage action for which the loads applied onto the FBRW were distributed through cross girders to the main girder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim/hypothesis Immune mechanisms have been proposed to play a role in the development of diabetic neuropathy. We employed in vivo corneal confocal microscopy (CCM) to quantify the presence and density of Langerhans cells (LCs) in relation to the extent of corneal nerve damage in Bowman's layer of the cornea in diabetic patients. Methods 128 diabetic patients aged 58±1 yrs with a differing severity of neuropathy based on Neuropathy Deficit Score (NDS—4.7±0.28) and 26 control subjects aged 53±3 yrs were examined. Subjects underwent a full neurological evaluation, evaluation of corneal sensation with non-contact corneal aesthesiometry (NCCA) and corneal nerve morphology using corneal confocal microscopy (CCM). Results The proportion of individuals with LCs was significantly increased in diabetic patients (73.8%) compared to control subjects (46.1%), P=0.001. Furthermore, LC density (no/mm2) was significantly increased in diabetic patients (17.73±1.45) compared to control subjects (6.94±1.58), P=0.001 and there was a significant correlation with age (r=0.162, P=0.047) and severity of neuropathy (r=−0.202, P=0.02). There was a progressive decrease in corneal sensation with increasing severity of neuropathy assessed using NDS in the diabetic patients (r=0.414, P=0.000). Corneal nerve fibre density (P<0.001), branch density (P<0.001) and length (P<0.001) were significantly decreased whilst tortuosity (P<0.01) was increased in diabetic patients with increasing severity of diabetic neuropathy. Conclusion Utilising in vivo corneal confocal microscopy we have demonstrated increased LCs in diabetic patients particularly in the earlier phases of corneal nerve damage suggestive of an immune mediated contribution to corneal nerve damage in diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A special transmit polarization signalling scheme is presented to alleviate the power reduction as a result of polarization mismatch from random antenna orientations. This is particularly useful for hand held mobile terminals typically equipped with only a single linearly polarized antenna, since the average signal power is desensitized against receiver orientations. Numerical simulations also show adequate robustness against incorrect channel estimations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular response to radiation damage is made by a complex network of pathways and feedback loops whose spatiotemporal organisation is still unclear despite its decisive role in determining the fate of the damaged cell. Revealing the dynamic sequence of the repair proteins is therefore critical in understanding how the DNA repair mechanisms work. There are also still open questions regarding the possible movement of damaged chromatin domains and its role as trigger for lesion recognition and signalling in the DNA repair context. The single-cell approach and the high spatial resolution offered by microbeams provide the perfect tool to study and quantify the dynamic processes associated with the induction and repair of DNA damage. We have followed the development of radiation-induced foci for three DNA damage markers (i.e. γ-H2AX, 53BP1 and hSSB1) using normal fibroblasts (AG01522), human breast adenocarcinoma cells (MCF7) and human fibrosarcoma cells (HT1080) stably transfected with yellow fluorescent protein fusion proteins following irradiation with the QUB X-ray microbeam (carbon X-rays <2 µm spot). The size and intensity of the foci has been analysed as a function of dose and time post-irradiation to investigate the dynamics of the above-mentioned DNA repair processes and monitor the remodelling of chromatin structure that the cell undergoes to deal with DNA damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of reports have demonstrated the importance of the CUB domaincontaining protein 1 (CDCP1) in facilitating cancer progression in animal models and the potential of this protein as a prognostic marker in several malignancies. CDCP1 facilitates metastasis formation in animal models by negatively regulating anoikis, a type of apoptosis triggered by the loss of attachment signalling from cell-cell contacts or cell-extra cellular matrix (ECM) contacts. Due to the important role CDCP1 plays in cancer progression in model systems, it is considered a potential drug target to prevent the metastatic spread of cancers. CDCP1 is a highly glycosylated 836 amino acid cell surface protein. It has structural features potentially facilitating protein-protein interactions including 14 N-glycosylation sites, three CUB-like domains, 20 cysteine residues likely to be involved in disulfide bond formation and five intracellular tyrosine residues. CDCP1 interacts with a variety of proteins including Src family kinases (SFKs) and protein kinase C ä (PKCä). Efforts to understand the mechanisms regulating these interactions have largely focussed on three CDCP1 tyrosine residues Y734, Y743 and Y762. CDCP1-Y734 is the site where SFKs phosphorylate and bind to CDCP1 and mediate subsequent phosphorylation of CDCP1-Y743 and -Y762 which leads to binding of PKCä at CDCP1-Y762. The resulting trimeric protein complex of SFK•CDCP1•PKCä has been proposed to mediate an anti-apoptotic cell phenotype in vitro, and to promote metastasis in vivo. The effect of mutation of the three tyrosines on interactions of CDCP1 with SFKs and PKCä and the consequences on cell phenotype in vitro and in vivo have not been examined. CDCP1 has a predicted molecular weight of ~90 kDa but is usually detected as a protein which migrates at ~135 kDa by Western blot analysis due to its high degree of glycosylation. A low molecular weight form of CDCP1 (LMWCDCP1) of ~70 kDa has been found in a variety of cancer cell lines. The mechanisms leading to the generation of LMW-CDCP1 in vivo are not well understood but an involvement of proteases in this process has been proposed. Serine proteases including plasmin and trypsin are able to proteolytically process CDCP1. In addition, the recombinant protease domain of the serine protease matriptase is also able to cleave the recombinant extracellular portion of CDCP1. Whether matriptase is able to proteolytically process CDCP1 on the cell surface has not been examined. Importantly, proteolytic processing of CDCP1 by trypsin leads to phosphorylation of its cell surface-retained portion which suggests that this event leads to initiation of an intracellular signalling cascade. This project aimed to further examine the biology of CDCP1 with a main of focus on exploring the roles played by CDCP1 tyrosine residues. To achieve this HeLa cells stably expressing CDCP1 or the CDCP1 tyrosine mutants Y734F, Y743F and Y762F were generated. These cell lines were used to examine: • The roles of the tyrosine residues Y734, Y743 and Y762 in mediating interactions of CDCP1 with binding proteins and to examine the effect of the stable expression on HeLa cell morphology. • The ability of the serine protease matriptase to proteolytically process cell surface CDCP1 and to examine the consequences of this event on HeLa cell phenotype and cell signalling in vitro. • The importance of these residues in processes associated with cancer progression in vitro including adhesion, proliferation and migration. • The role of these residues on metastatic phenotype in vivo and the ability of a function-blocking anti-CDCP1 antibody to inhibit metastasis in the chicken embryo chorioallantoic membrane (CAM) assay. Interestingly, biochemical experiments carried out in this study revealed that mutation of certain CDCP1 tyrosine residues impacts on interactions of this protein with binding proteins. For example, binding of SFKs as well as PKCä to CDCP1 was markedly decreased in HeLa-CDCP1-Y734F cells, and binding of PKCä was also reduced in HeLa-CDCP1-Y762F cells. In contrast, HeLa-CDCP1-Y743F cells did not display altered interactions with CDCP1 binding proteins. Importantly, observed differences in interactions of CDCP1 with binding partners impacted on basal phosphorylation of CDCP1. It was found that HeLa-CDCP1, HeLa-CDCP1-Y743F and -Y762F displayed strong basal levels of CDCP1 phosphorylation. In contrast, HeLa-CDCP1-Y734F cells did not display CDCP1 phosphorylation but exhibited constitutive phosphorylation of focal adhesion kinase (FAK) at tyrosine 861. Significantly, subsequent investigations to examine this observation suggested that CDCP1-Y734 and FAK-Y861 are competitive substrates for SFK-mediated phosphorylation. It appeared that SFK-mediated phosphorylation of CDCP1- Y734 and FAK-Y861 is an equilibrium which shifts depending on the level of CDCP1 expression in HeLa cells. This suggests that the level of CDCP1 expression may act as a regulatory mechanism allowing cells to switch from a FAK-Y861 mediated pathway to a CDCP1-Y734 mediated pathway. This is the first time that a link between SFKs, CDCP1 and FAK has been demonstrated. One of the most interesting observations from this work was that CDCP1 altered HeLa cell morphology causing an elongated and fibroblastic-like appearance. Importantly, this morphological change depended on CDCP1- Y734. In addition, it was observed that this change in cell morphology was accompanied by increased phosphorylation of SFK-Y416. This suggests that interactions of SFKs with CDCP1-Y734 increases SFK activity since SFKY416 is critical in regulating kinase activity of these proteins. The essential role of SFKs in mediating CDCP1-induced HeLa cell morphological changes was demonstrated using the SFK-selective inhibitor SU6656. This inhibitor caused reversion of HeLa-CDCP1 cell morphology to an epithelial appearance characteristic of HeLa-vector cells. Significantly, in vitro studies revealed that certain CDCP1-mediated cell phenotypes are mediated by cellular pathways dependent on CDCP1 tyrosine residues whereas others are independent of these sites. For example, CDCP1 expression caused a marked increase in HeLa cell motility that was independent of CDCP1 tyrosine residues. In contrast, CDCP1- induced decrease in HeLa cell proliferation was most prominent in HeLa- CDCP1-Y762F cells, potentially indicating a role for this site in regulating proliferation in HeLa cells. Another cellular event which was identified to require phosphorylation of a particular CDCP1 tyrosine residue is adhesion to fibronectin. It was observed that the CDCP1-mediated strong decrease in adhesion to fibronectin is mostly restored in HeLa-CDCP1-Y743F cells. This suggests a possible role for CDCP1-Y743 in causing a CDCP1-mediated decrease in adhesion. Data from in vivo experiments indicated that HeLa-CDCP1-Y734F cells are more metastic than HeLa-CDCP1 cells in vivo. This indicates that interaction of CDCP1 with SFKs and PKCä may not be required for CDCP1-mediated metastasis formation of HeLa cells in vivo. The metastatic phenotype of these cells may be caused by signalling involving FAK since HeLa-CDCP1- Y734F cells are the only CDCP1 expressing cells displaying constitutive phosphorylation of FAK-Y861. HeLa-CDCP1-Y762F cells displayed a very low metastatic ability which suggests that this CDCP1 tyrosine residue is important in mediating a pro-metastatic phenotype in HeLa cells. More detailed exploration of cellular events occurring downstream of CDCP1-Y734 and -Y762 may provide important insights into the mechanisms altering the metastatic ability of CDCP1 expressing HeLa cells. Complementing the in vivo studies, anti-CDCP1 antibodies were employed to assess whether these antibodies are able to inhibit metastasis of CDCP1 and CDCP1 tyrosine mutants expressing HeLa cells. It was found that HeLa- CDCP1-Y734F cells were the only cell line which was markedly reduced in the ability to metastasise. In contrast, the ability of HeLa-CDCP1, HeLa- CDCP1-Y743F and -Y762F cells to metastasise in vivo was not inhibited. These data suggest a possible role of interactions of CDCP1 with SFKs, occurring at CDCP1-Y734, in preventing an anti-metastatic effect of anti- CDCP1 antibodies in vivo. The proposal that SFKs may play a role in regulating anti-metastatic effects of anti-CDCP1 antibodies was supported by another experiment where differences between HeLa-CDCP1 cells and CDCP1 expressing HeLa cells (HeLa-CDCP1-S) from collaborators at the Scripps Research Institute were examined. It was found that HeLa-CDCP1-S cells express different SFKs than CDCP1 expressing HeLa cells generated for this study. This is important since HeLa-CDCP1-S cells can be inhibited in their metastatic ability using anti-CDCP1 antibodies in vivo. Importantly, these data suggest that further examinations of the roles of SFKs in facilitating anti-metastatic effects of anti-CDCP1 antibodies may give insights into how CDCP1 can be blocked to prevent metastasis in vivo. This project also explored the ability of the serine protease matriptase to proteolytically process cell surface localised CDCP1 because it is unknown whether matriptase can cleave cell surface CDCP1 as it has been reported for other proteases such as trypsin and plasmin. Furthermore, the consequences of matriptase-mediated proteolysis on cell phenotype in vitro and cell signalling were examined since recent reports suggested that proteolysis of CDCP1 leads to its phosphorylation and may initiate cell signalling and consequently alter cell phenotype. It was found that matriptase is able to proteolytically process cell surface CDCP1 at low nanomolar concentrations which suggests that cleavage of CDCP1 by matriptase may facilitate the generation of LWM-CDCP1 in vivo. To examine whether matriptase-mediated proteolysis induced cell signalling anti-phospho Erk 1/2 Western blot analysis was performed as this pathway has previously been examined to study signalling in response to proteolytic processing of cell surface proteins. It was found that matriptase-mediated proteolysis in CDCP1 expressing HeLa cells initiated intracellular signalling via Erk 1/2. Interestingly, this increase in phosphorylation of Erk 1/2 was also observed in HeLa-vector cells. This suggested that initiation of cell signalling via Erk 1/2 phosphorylation as a result of matriptase-mediated proteolysis occurs by pathways independent of CDCP1. Subsequent investigations measuring the flux of free calcium ions and by using a protease-activated receptor 2 (PAR2) agonist peptide confirmed this hypothesis. These data suggested that matriptase-mediated proteolysis results in cell signalling via a pathway induced by the activation of PAR2 rather than by CDCP1. This indicates that induction of cell signalling in HeLa cells as a consequence of matriptase-mediated proteolysis occurs via signalling pathways which do not involve phosphorylation of Erk 1/2. Consequently, it appears that future attempts should focus on the examination of cellular pathways other than Erk 1/2 to elucidate cell signalling initiated by matriptase-mediated proteolytic processing of CDCP1. The data presented in this thesis has explored in vitro and in vivo aspects of the biology of CDCP1. The observations summarised above will permit the design of future studies to more precisely determine the role of CDCP1 and its binding partners in processes relevant to cancer progression. This may contribute to further defining CDCP1 as a target for cancer treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the Kinaesthetic Fusion Effect (KFE) that was first described by Craske and Kenny in 1981. It was reported that when, without vision, participants pressed a button that resulted in a probe simultaneously touching the contralateral limb at a displaced location, they perceived an apparent change in limb length. The current study did not fully replicate these earlier findings. Participants did not perceive any reduction in the sagittal separation of the button and probe following repeated exposure to the tactile stimuli that was present on both arms. However, a localised and partial medio-lateral fusion was observed, with the touched positions seeming closer together. In addition, tactile acuity was found to decrease progressively for distal positions of the upper limb and a foreshortening effect was found which may result from a line-of-sight judgment and represent a feature of the reporting method used. A number of years have elapsed since the description of the original KFE. Although frequently cited in the literature, there has been no further investigation into the mechanisms of action. The results of the current study are considered in light of more recent literature concerning intersensory integration. Future research should focus on further clarification for the specific conditions that must be present for a fusion effect to occur. Finally, this thesis will benefit future studies that require participants to report the perceived locations of the unseen limbs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heart damage caused by acute myocardial infarction (AMI) is a leading cause of death and disability in Australia. Novel therapies are still required for the treatment of this condition due to the poor reparative ability of the heart. As such, cellular therapies that assist in the recovery of heart muscle are of great current interest. Culture expanded mesenchymal stem cells (MSC) represent a stem and progenitor cell population that has been shown to promote tissue recovery in pre-clinical studies of AMI. For MSC-based therapies in the clinic, an intravenous route of administration would ideally be used due to the low cost, ease of delivery and relative safety. The study of MSC migration is therefore clinically relevant for a minimally invasive cell therapy to promote regeneration of damaged tissue. C57BL/6, UBI-GFP-BL/6 and CD44-/-/GFP+/+ mice were utilised to investigate mMSC migration. To assist in murine models of MSC migration, a novel method was used for the isolation of murine MSC (mMSC). These mMSC were then expanded in culture and putative mMSC were positive for Sca-1, CD90.2, and CD44 and were negative for CD45 and CD11b. Furthermore, mMSC from C57BL/6 and UBI-GFP-BL/6 mice were shown to differentiate into cells of the mesodermal lineage. Cells from CD44-/-/GFP+/+ mice were positive for Sca-1 and CD90.2, and negative for CD44, CD45 and CD11b however, these cells were unable to differentiate into adipocytes and chondrocytes and express lineage specific genes, PLIN and ACAN. Analysis of mMSC chemokine receptor (CR) expression showed that although mMSC do express chemokine receptors, (including those specific for chemokines released after AMI), these were low or undetectable by mRNA. However, protein expression could be detected, which was predominantly cytoplasmic. It was further shown that in both healthy (unperturbed) and inflamed tissues, mMSC had very little specific migration and engraftment after intravenous injection. To determine if poor mMSC migration was due to the inability of mMSC to respond to chemotactic stimuli, chemokine expression in bone marrow, skin injury and hearts (healthy and after AMI) was analysed at various time points by quantitative real-time PCR (qRT PCR). Many chemokines were up-regulated after skin biopsy and AMI, but the highest acute levels were found for CXCL12 and CCL7. Due to their high expression in infarcted hearts, the chemokines CXCL12 and CCL7 were tested for their effect on mMSC migration. Despite CR expression at both protein and mRNA levels, migration in response to CXCL12 and CCL7 was low in mMSC cultured on Nunclon plastic. A novel tissue culture plastic technology (UpCellTM) was then used that allowed gentle non-enzymatic dissociation of mMSC, thus preserving surface expression of the CRs. Despite this the in vitro data indicated that CXCL12 fails to induce significant migration ability of mMSC, while CCL7 induces significant, but low-level migration. We speculated this may be because of low levels of surface expression of chemokine receptors. In a strategy to increase cell surface expression of mMSC chemokine receptors and enhance their in vitro and in vivo migration capacity, mMSC were pre-treated with pro-inflammatory cytokines. Increased levels of both mRNA and surface protein expression were found for CRs by pre-treating mMSC with pro-inflammatory cytokines including TNF-á, IFN-ã, IL-1á and IL-6. Furthermore, the chemotactic response of mMSC to CXCL12 and CCL7 was significantly higher with these pretreated cells. Finally, the effectiveness of this type of cell manipulation was demonstrated in vivo, where mMSC pre-treated with TNF-á and IFN-ã showed significantly increased migration in skin injury and AMI models. Therefore this thesis has demonstrated, using in vitro and in vivo models, the potential for prior manipulation of MSC as a possible means for increasing the utility of intravenously delivery for MSC-based cellular therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A good faith reading of core international protection obligations requires that states employ appropriate legislative, administrative and judicial mechanisms to ensure the enjoyment of a fair and effective asylum process. Restrictive asylum policies instead seek to ‘denationalize’ the asylum process by eroding access to national statutory, judicial and executive safeguards that ensure a full and fair hearing of an asylum claim. From a broader perspective, the argument in this thesis recognizes hat international human rights depend on domestic institutions for their effective implementation, and that a rights-based international legal order requires that power is limited, whether that power is expressed as an instance of the sovereign right of states in international law or as the authority of governments under domestic constitutions.