154 resultados para reproductive pattern
Resumo:
Stem cells have attracted tremendous interest in recent times due to their promise in providing innovative new treatments for a great range of currently debilitating diseases. This is due to their potential ability to regenerate and repair damaged tissue, and hence restore lost body function, in a manner beyond the body's usual healing process. Bone marrow-derived mesenchymal stem cells or bone marrow stromal cells are one type of adult stem cells that are of particular interest. Since they are derived from a living human adult donor, they do not have the ethical issues associated with the use of human embryonic stem cells. They are also able to be taken from a patient or other donors with relative ease and then grown readily in the laboratory for clinical application. Despite the attractive properties of bone marrow stromal cells, there is presently no quick and easy way to determine the quality of a sample of such cells. Presently, a sample must be grown for weeks and subject to various time-consuming assays, under the direction of an expert cell biologist, to determine whether it will be useful. Hence there is a great need for innovative new ways to assess the quality of cell cultures for research and potential clinical application. The research presented in this thesis investigates the use of computerised image processing and pattern recognition techniques to provide a quicker and simpler method for the quality assessment of bone marrow stromal cell cultures. In particular, aim of this work is to find out whether it is possible, through the use of image processing and pattern recognition techniques, to predict the growth potential of a culture of human bone marrow stromal cells at early stages, before it is readily apparent to a human observer. With the above aim in mind, a computerised system was developed to classify the quality of bone marrow stromal cell cultures based on phase contrast microscopy images. Our system was trained and tested on mixed images of both healthy and unhealthy bone marrow stromal cell samples taken from three different patients. This system, when presented with 44 previously unseen bone marrow stromal cell culture images, outperformed human experts in the ability to correctly classify healthy and unhealthy cultures. The system correctly classified the health status of an image 88% of the time compared to an average of 72% of the time for human experts. Extensive training and testing of the system on a set of 139 normal sized images and 567 smaller image tiles showed an average performance of 86% and 85% correct classifications, respectively. The contributions of this thesis include demonstrating the applicability and potential of computerised image processing and pattern recognition techniques to the task of quality assessment of bone marrow stromal cell cultures. As part of this system, an image normalisation method has been suggested and a new segmentation algorithm has been developed for locating cell regions of irregularly shaped cells in phase contrast images. Importantly, we have validated the efficacy of both the normalisation and segmentation method, by demonstrating that both methods quantitatively improve the classification performance of subsequent pattern recognition algorithms, in discriminating between cell cultures of differing health status. We have shown that the quality of a cell culture of bone marrow stromal cells may be assessed without the need to either segment individual cells or to use time-lapse imaging. Finally, we have proposed a set of features, that when extracted from the cell regions of segmented input images, can be used to train current state of the art pattern recognition systems to predict the quality of bone marrow stromal cell cultures earlier and more consistently than human experts.
Resumo:
Sample complexity results from computational learning theory, when applied to neural network learning for pattern classification problems, suggest that for good generalization performance the number of training examples should grow at least linearly with the number of adjustable parameters in the network. Results in this paper show that if a large neural network is used for a pattern classification problem and the learning algorithm finds a network with small weights that has small squared error on the training patterns, then the generalization performance depends on the size of the weights rather than the number of weights. For example, consider a two-layer feedforward network of sigmoid units, in which the sum of the magnitudes of the weights associated with each unit is bounded by A and the input dimension is n. We show that the misclassification probability is no more than a certain error estimate (that is related to squared error on the training set) plus A3 √((log n)/m) (ignoring log A and log m factors), where m is the number of training patterns. This may explain the generalization performance of neural networks, particularly when the number of training examples is considerably smaller than the number of weights. It also supports heuristics (such as weight decay and early stopping) that attempt to keep the weights small during training. The proof techniques appear to be useful for the analysis of other pattern classifiers: when the input domain is a totally bounded metric space, we use the same approach to give upper bounds on misclassification probability for classifiers with decision boundaries that are far from the training examples.
Resumo:
Chlamydia trachomatis is a major cause of sexually transmitted diseases worldwide. There currently is no vaccine to protect against chlamydial infection of the female reproductive tract. Vaccine development has predominantly involved using the murine model, however infection of female guinea pigs with Chlamydia caviae more closely resembles chlamydial infection of the human female reproductive tract, and presents a better model to assess potential human chlamydial vaccines. We immunised female guinea pigs intranasally with recombinant major outer membrane protein (r-MOMP) combined with CpG-10109 and cholera toxin adjuvants. Both systemic and mucosal immune responses were elicited in immunised animals. MOMP-specific IgG and IgA were present in the vaginal mucosae, and high levels of MOMP-specific IgG were detected in the serum of immunised animals. Antibodies from the vaginal mucosae were also shown to be capable of neutralising C. caviae in vitro. Following immunisation, animals were challenged intravaginally with a live C. caviae infection of 102 inclusion forming units. We observed a decrease in duration of infection and a significant (p<0.025) reduction in infection load in r-MOMP immunised animals, compared to animals immunised with adjuvant only. Importantly, we also observed a marked reduction in upper reproductive tract (URT) pathology in r-MOMP immunised animals. Intranasal immunisation of female guinea pigs with r-MOMP was able to provide partial protection against C. caviae infection, not only by reducing chlamydial burden but also URT pathology. This data demonstrates the value of using the guinea pig model to evaluate potential chlamydial vaccines for protection against infection and disease pathology caused by C. trachomatis in the female reproductive tract.
Resumo:
Extracellular matrix regulates many cellular processes likely to be important for development and regression of corpora lutea. Therefore, we identified the types and components of the extracellular matrix of the human corpus luteum at different stages of the menstrual cycle. Two different types of extracellular matrix were identified by electron microscopy; subendothelial basal laminas and an interstitial matrix located as aggregates at irregular intervals between the non-vascular cells. No basal laminas were associated with luteal cells. At all stages, collagen type IV α1 and laminins α5, β2 and γ1 were localized by immunohistochemistry to subendothelial basal laminas, and collagen type IV α1 and laminins α2, α5, β1 and β2 localized in the interstitial matrix. Laminin α4 and β1 chains occurred in the subendothelial basal lamina from mid-luteal stage to regression; at earlier stages, a punctate pattern of staining was observed. Therefore, human luteal subendothelial basal laminas potentially contain laminin 11 during early luteal development and, additionally, laminins 8, 9 and 10 at the mid-luteal phase. Laminin α1 and α3 chains were not detected in corpora lutea. Versican localized to the connective tissue extremities of the corpus luteum. Thus, during the formation of the human corpus luteum, remodelling of extracellular matrix does not result in basal laminas as present in the adrenal cortex or ovarian follicle. Instead, novel aggregates of interstitial matrix of collagen and laminin are deposited within the luteal parenchyma, and it remains to be seen whether this matrix is important for maintaining the luteal cell phenotype.
Resumo:
The progesterone receptor (PR) is a candidate gene for the development of endometriosis, a complex disease with strong hormonal features, common in women of reproductive age. We typed the 306 base pair Alu insertion (AluIns) polymorphism in intron G of PR in 101 individuals, estimated linkage disequilibrium (LD) between five single-nucleotide polymorphisms (SNPs) across the PR locus in 980 Australian triads (endometriosis case and two parents) and used transmission disequilibrium testing (TDT) for association with endometriosis. The five SNPs showed strong pairwise LD, and the AluIns was highly correlated with proximal SNPs rs1042839 (Δ2 = 0.877, D9 = 1.00, P < 0.0001) and rs500760 (Δ2 = 0.438, D9 = 0.942, P < 0.0001). TDT showed weak evidence of allelic association between endometriosis and rs500760 (P = 0.027) but not in the expected direction. We identified a common susceptibility haplotype GGGCA across the five SNPs (P = 0.0167) in the whole sample, but likelihood ratio testing of haplotype transmission and non-transmission of the AluIns and flanking SNPs showed no significant pattern. Further, analysis of our results pooled with those from two previous studies suggested that neither the T2 allele of the AluIns nor the T1/T2 genotype was associated with endometriosis.
Resumo:
In rats immunized systemically with tetanus toxoid the concentration of specific anti-tetanus-toxoid-specific IgG in fluid from the rete testis and cauda epididymidis were respectively 0.6% and 1.4% the concentration in blood serum. The extratesticular duct system reabsorbed 97% of the IgG and 99% of the fluid leaving the rete, but estradiol administration affected the site of reabsorption. In untreated rats, the ductuli efferentes reabsorbed 94% of the IgG and 96% of the fluid leaving the rete, whereas estradiol-treated rats reabsorbed 83% of the IgG and 86% of the fluid, and the ductus epididymidis fully compensated for these different effects of estradiol on the ductuli efferentes. The concentrations of IgG in secretions of the seminal vesicles and prostate gland were lower (0.1% and 0.3% respectively of the titers in blood serum) than in fluids from the extratesticular ducts, and were not affected by the administration of estradiol. RT-PCR showed that Fcgrt (neonatal Fc receptor, also known as FcRn) is expressed in the reproductive ducts, where IgG is probably transported across epithelium, being particularly strong in the ductuli efferentes (where most IgG was reabsorbed) and distal caput epididymidis. It is concluded that IgG enters the rete testis and is concentrated only 2.5-fold along the extratesticular duct system, unlike spermatozoa, which are concentrated 95-fold. Further, the ductus epididymidis can recognize and compensate for changes in function of the ductuli efferentes.
Resumo:
A new algorithm for extracting features from images for object recognition is described. The algorithm uses higher order spectra to provide desirable invariance properties, to provide noise immunity, and to incorporate nonlinearity into the feature extraction procedure thereby allowing the use of simple classifiers. An image can be reduced to a set of 1D functions via the Radon transform, or alternatively, the Fourier transform of each 1D projection can be obtained from a radial slice of the 2D Fourier transform of the image according to the Fourier slice theorem. A triple product of Fourier coefficients, referred to as the deterministic bispectrum, is computed for each 1D function and is integrated along radial lines in bifrequency space. Phases of the integrated bispectra are shown to be translation- and scale-invariant. Rotation invariance is achieved by a regrouping of these invariants at a constant radius followed by a second stage of invariant extraction. Rotation invariance is thus converted to translation invariance in the second step. Results using synthetic and actual images show that isolated, compact clusters are formed in feature space. These clusters are linearly separable, indicating that the nonlinearity required in the mapping from the input space to the classification space is incorporated well into the feature extraction stage. The use of higher order spectra results in good noise immunity, as verified with synthetic and real images. Classification of images using the higher order spectra-based algorithm compares favorably to classification using the method of moment invariants