627 resultados para publication lag time
Resumo:
Few studies have formally examined the relationship between meteorological factors and the incidence of child pneumonia in the tropics, despite the fact that most child pneumonia deaths occur there. We examined the association between four meteorological exposures (rainy days, sunshine, relative humidity, temperature) and the incidence of clinical pneumonia in young children in the Philippines using three time-series methods: correlation of seasonal patterns, distributed lag regression, and case-crossover. Lack of sunshine was most strongly associated with pneumonia in both lagged regression [overall relative risk over the following 60 days for a 1-h increase in sunshine per day was 0·67 (95% confidence interval (CI) 0·51–0·87)] and case-crossover analysis [odds ratio for a 1-h increase in mean daily sunshine 8–14 days earlier was 0·95 (95% CI 0·91–1·00)]. This association is well known in temperate settings but has not been noted previously in the tropics. Further research to assess causality is needed.
Resumo:
As Earth's climate is rapidly changing, the impact of ambient temperature on health outcomes has attracted increasing attention in the recent time. Considerable number of excess deaths has been reported because of exposure to ambient hot and cold temperatures. However, relatively little research has been conducted on the relation between temperature and morbidity. The aim of this study was to characterize the relationship between both hot and cold temperatures and emergency hospital admissions in Brisbane, Australia, and to examine whether the relation varied by age and socioeconomic factors. It aimed to explore lag structures of temperature–morbidity association for respiratory causes, and to estimate the magnitude of emergency hospital admissions for cardiovascular diseases attributable to hot and cold temperatures for the large contribution of both diseases to the total emergency hospital admissions. A time series study design was applied using routinely collected data of daily emergency hospital admissions, weather and air pollution variables in Brisbane during 1996–2005. Poisson regression model with a distributed lag non-linear structure was adopted to assess the impact of temperature on emergency hospital admissions after adjustment for confounding factors. Both hot and cold effects were found, with higher risk of hot temperatures than that of cold temperatures. Increases in mean temperature above 24.2oC were associated with increased morbidity, especially for the elderly ≥ 75 years old with the largest effect. The magnitude of the risk estimates of hot temperature varied by age and socioeconomic factors. High population density, low household income, and unemployment appeared to modify the temperature–morbidity relation. There were different lag structures for hot and cold temperatures, with the acute hot effect within 3 days after hot exposure and about 2-week lagged cold effect on respiratory diseases. A strong harvesting effect after 3 days was evident for respiratory diseases. People suffering from cardiovascular diseases were found to be more vulnerable to hot temperatures than cold temperatures. However, more patients admitted for cardiovascular diseases were attributable to cold temperatures in Brisbane compared with hot temperatures. This study contributes to the knowledge base about the association between temperature and morbidity. It is vitally important in the context of ongoing climate change. The findings of this study may provide useful information for the development and implementation of public health policy and strategic initiatives designed to reduce and prevent the burden of disease due to the impact of climate change.
Resumo:
The inconsistent findings of past board diversity research demand a test of competing linear and curvilinear diversity–performance predictions. This research focuses on board age and gender diversity, and presents a positive linear prediction based on resource dependence theory, a negative linear prediction based on social identity theory, and an inverted U-shaped curvilinear prediction based on the integration of resource dependence theory with social identity theory. The predictions were tested using archival data on 288 large organizations listed on the Australian Securities Exchange, with a 1-year time lag between diversity (age and gender) and performance (employee productivity and return on assets). The results indicate a positive linear relationship between gender diversity and employee productivity, a negative linear relationship between age diversity and return on assets, and an inverted U-shaped curvilinear relationship between age diversity and return on assets. The findings provide additional evidence on the business case for board gender diversity and refine the business case for board age diversity.
Resumo:
Background Heat-related impacts may have greater public health implications as climate change continues. It is important to appropriately characterize the relationship between heatwave and health outcomes. However, it is unclear whether a case-crossover design can be effectively used to assess the event- or episode-related health effects. This study examined the association between exposure to heatwaves and mortality and emergency hospital admissions (EHAs) from non-external causes in Brisbane, Australia, using both case-crossover and time series analyses approaches. Methods Poisson generalised additive model (GAM) and time-stratified case-crossover analyses were used to assess the short-term impact of heatwaves on mortality and EHAs. Heatwaves exhibited a significant impact on mortality and EHAs after adjusting for air pollution, day of the week, and season. Results For time-stratified case-crossover analysis, odds ratios of mortality and EHAs during heatwaves were 1.62 (95% confidence interval (CI): 1.36–1.94) and 1.22 (95% CI: 1.14–1.30) at lag 1, respectively. Time series GAM models gave similar results. Relative risks of mortality and EHAs ranged from 1.72 (95% CI: 1.40–2.11) to 1.81 (95% CI: 1.56–2.10) and from 1.14 (95% CI: 1.06–1.23) to 1.28 (95% CI: 1.21–1.36) at lag 1, respectively. The risk estimates gradually attenuated after the lag of one day for both case-crossover and time series analyses. Conclusions The risk estimates from both case-crossover and time series models were consistent and comparable. This finding may have implications for future research on the assessment of event- or episode-related (e.g., heatwave) health effects.
Resumo:
Background The association between temperature and mortality has been examined mainly in North America and Europe. However, less evidence is available in developing countries, especially in Thailand. In this study, we examined the relationship between temperature and mortality in Chiang Mai city, Thailand, during 1999–2008. Method A time series model was used to examine the effects of temperature on cause-specific mortality (non-external, cardiopulmonary, cardiovascular, and respiratory) and age-specific non-external mortality (<=64, 65–74, 75–84, and > =85 years), while controlling for relative humidity, air pollution, day of the week, season and long-term trend. We used a distributed lag non-linear model to examine the delayed effects of temperature on mortality up to 21 days. Results We found non-linear effects of temperature on all mortality types and age groups. Both hot and cold temperatures resulted in immediate increase in all mortality types and age groups. Generally, the hot effects on all mortality types and age groups were short-term, while the cold effects lasted longer. The relative risk of non-external mortality associated with cold temperature (19.35°C, 1st percentile of temperature) relative to 24.7°C (25th percentile of temperature) was 1.29 (95% confidence interval (CI): 1.16, 1.44) for lags 0–21. The relative risk of non-external mortality associated with high temperature (31.7°C, 99th percentile of temperature) relative to 28°C (75th percentile of temperature) was 1.11 (95% CI: 1.00, 1.24) for lags 0–21. Conclusion This study indicates that exposure to both hot and cold temperatures were related to increased mortality. Both cold and hot effects occurred immediately but cold effects lasted longer than hot effects. This study provides useful data for policy makers to better prepare local responses to manage the impact of hot and cold temperatures on population health.
Resumo:
Using the belief basis of the theory of planned behavior (TPB), the current study explored the rate of mild reactions reported by donors in relation to their first donation and the intention and beliefs of those donors with regard to returning to donate again. A high proportion of first-time donors indicated that they had experienced a reaction to blood donation. Further, donors who reacted were less likely to intend to return to donate. Regression analyses suggested that targeting different beliefs for those donors who had and had not reacted would yield most benefit in bolstering donors’ intentions to remain donating. The findings provide insight into those messages that could be communicated via the mass media or in targeted communications to retain first-time donors who have experienced a mild vasovagal reaction.
Resumo:
This paper presents an investigation into event detection in crowded scenes, where the event of interest co-occurs with other activities and only binary labels at the clip level are available. The proposed approach incorporates a fast feature descriptor from the MPEG domain, and a novel multiple instance learning (MIL) algorithm using sparse approximation and random sensing. MPEG motion vectors are used to build particle trajectories that represent the motion of objects in uniform video clips, and the MPEG DCT coefficients are used to compute a foreground map to remove background particles. Trajectories are transformed into the Fourier domain, and the Fourier representations are quantized into visual words using the K-Means algorithm. The proposed MIL algorithm models the scene as a linear combination of independent events, where each event is a distribution of visual words. Experimental results show that the proposed approaches achieve promising results for event detection compared to the state-of-the-art.
Resumo:
Dengue fever (DF) is a serious public health concern in many parts of the world. An increase in DF incidence has been observed globally over the past decades. Multiple factors including urbanisation, increased international travels and global climate change are thought to be responsible for increased DF. However, little research has been conducted in the Asia-Pacific region about the impact of these changes on dengue transmission. The overarching aim of this thesis is to explore the spatiotemporal pattern of DF transmission in the Asia-Pacific region and project the future risk of DF attributable to climate change. Annual data of DF outbreaks for sixteen countries in the Asia-Pacific region over the last fifty years were used in this study. The results show that the geographic range of DF in this region increased significantly over the study period. Thailand, Vietnam and Laos were identified as the highest risk areas and there was a southward expansion observed in the transmission pattern of DF which might have originated from Philippines or Thailand. Additionally, the detailed DF data were obtained and the space-time clustering of DF transmission was examined in Bangladesh. Monthly DF data were used for the entire country at the district level during 2000-2009. Dhaka district was identified as the most likely DF cluster in Bangladesh and several districts of the southern part of Bangladesh were identified as secondary clusters in the years 2000-2002. In order to examine the association between meteorological factors and DF transmission and to project the future risk of DF using different climate change scenarios, the climate-DF relationship was examined in Dhaka, Bangladesh. The results show that climate variability (particularly maximum temperature and relative humidity) was positively associated with DF transmission in Dhaka. The effects of climate variability were observed at a lag of four months which might help to potentially control and prevent DF outbreaks through effective vector management and community education. Based on the quantitative assessment of the climate-DF relationship, projected climate change will likely increase mosquito abundance and activity and DF in this area. Assuming a temperature increase of 3.3oC without any adaptation measures and significant changes in socio-economic conditions, the consequence will be devastating, with a projected annual increase of 16,030 cases in Dhaka, Bangladesh by the end of this century. Therefore, public health authorities need to be prepared for likely increase of DF transmission in this region. This study adds to the literature on the recent trends of DF and impacts of climate change on DF transmission. These findings may have significant public health implications for the control and prevention of DF, particularly in the Asia- Pacific region.
Resumo:
The rapid development of the World Wide Web has created massive information leading to the information overload problem. Under this circumstance, personalization techniques have been brought out to help users in finding content which meet their personalized interests or needs out of massively increasing information. User profiling techniques have performed the core role in this research. Traditionally, most user profiling techniques create user representations in a static way. However, changes of user interests may occur with time in real world applications. In this research we develop algorithms for mining user interests by integrating time decay mechanisms into topic-based user interest profiling. Time forgetting functions will be integrated into the calculation of topic interest measurements on in-depth level. The experimental study shows that, considering temporal effects of user interests by integrating time forgetting mechanisms shows better performance of recommendation.
Resumo:
Background Transmission of Plasmodium vivax malaria is dependent on vector availability, biting rates and parasite development. In turn, each of these is influenced by climatic conditions. Correlations have previously been detected between seasonal rainfall, temperature and malaria incidence patterns in various settings. An understanding of seasonal patterns of malaria, and their weather drivers, can provide vital information for control and elimination activities. This research aimed to describe temporal patterns in malaria, rainfall and temperature, and to examine the relationships between these variables within four counties of Yunnan Province, China. Methods Plasmodium vivax malaria surveillance data (1991–2006), and average monthly temperature and rainfall were acquired. Seasonal trend decomposition was used to examine secular trends and seasonal patterns in malaria. Distributed lag non-linear models were used to estimate the weather drivers of malaria seasonality, including the lag periods between weather conditions and malaria incidence. Results There was a declining trend in malaria incidence in all four counties. Increasing temperature resulted in increased malaria risk in all four areas and increasing rainfall resulted in increased malaria risk in one area and decreased malaria risk in one area. The lag times for these associations varied between areas. Conclusions The differences detected between the four counties highlight the need for local understanding of seasonal patterns of malaria and its climatic drivers.
Resumo:
The numerical solution in one space dimension of advection--reaction--diffusion systems with nonlinear source terms may invoke a high computational cost when the presently available methods are used. Numerous examples of finite volume schemes with high order spatial discretisations together with various techniques for the approximation of the advection term can be found in the literature. Almost all such techniques result in a nonlinear system of equations as a consequence of the finite volume discretisation especially when there are nonlinear source terms in the associated partial differential equation models. This work introduces a new technique that avoids having such nonlinear systems of equations generated by the spatial discretisation process when nonlinear source terms in the model equations can be expanded in positive powers of the dependent function of interest. The basis of this method is a new linearisation technique for the temporal integration of the nonlinear source terms as a supplementation of a more typical finite volume method. The resulting linear system of equations is shown to be both accurate and significantly faster than methods that necessitate the use of solvers for nonlinear system of equations.
Resumo:
The approach adopted for investigating the relationship between rainfall characteristics and pollutant wash-off process is commonly based on the use of parameters which represent the entire rainfall event. This does not permit the investigation of the influence of rainfall characteristics on different sectors of the wash-off process such as first flush where there is a high pollutant wash-off load at the initial stage of the runoff event. This research study analysed the influence of rainfall characteristics on the pollutant wash-off process using two sets of innovative parameters by partitioning wash-off and rainfall characteristics. It was found that the initial 10% of the wash-off process is closely linked to runoff volume related rainfall parameters including rainfall depth and rainfall duration while the remaining part of the wash-off process is primarily influenced by kinetic energy related rainfall parameters, namely, rainfall intensity. These outcomes prove that different sectors of the wash-off process are influenced by different segments of a rainfall event.
A finite volume method for solving the two-sided time-space fractional advection-dispersion equation
Resumo:
We present a finite volume method to solve the time-space two-sided fractional advection-dispersion equation on a one-dimensional domain. The spatial discretisation employs fractionally-shifted Grünwald formulas to discretise the Riemann-Liouville fractional derivatives at control volume faces in terms of function values at the nodes. We demonstrate how the finite volume formulation provides a natural, convenient and accurate means of discretising this equation in conservative form, compared to using a conventional finite difference approach. Results of numerical experiments are presented to demonstrate the effectiveness of the approach.
Resumo:
This study investigated the effect of a calcium phosphate (CaP) coating onto a polycaprolactone melt electrospun scaffold and in vitro culture conditions on ectopic bone formation in a subcutaneous rat model. The CaP coating resulted in an increased alkaline phosphatase activity (ALP) in ovine osteoblasts regardless of the culture conditions and this was also translated into higher levels of mineralisation. A subcutaneous implantation was performed and increasing ectopic bone formation was observed over time for the CaPcoated samples previously cultured in osteogenic media whereas the corresponding non-coated samples displayed a lag phase before bone formation occurred from 4 to 8 weeks post-implantation. Histology and immunohistochemistry revealed bone fill through the scaffolds 8 weeks post-implantation for coated and non-coated specimens and that ALP, osteocalcin and collagen 1 were present at the ossification front and in the bone tissues. Vascularisation in the vicinity of the bone tissues was also observed indicating that the newly formed bone was not deprived of oxygen and nutrients.We found that in vitro osteogenic induction was essential for achieving bone formation and CaP coating accelerated the osteogenic process. We conclude that high cell density and preservation of the collagenous and mineralised extracellular matrix secreted in vitro are factors of importance for ectopic bone formation.
Resumo:
A new test of hypothesis for classifying stationary time series based on the bias-adjusted estimators of the fitted autoregressive model is proposed. It is shown theoretically that the proposed test has desirable properties. Simulation results show that when time series are short, the size and power estimates of the proposed test are reasonably good, and thus this test is reliable in discriminating between short-length time series. As the length of the time series increases, the performance of the proposed test improves, but the benefit of bias-adjustment reduces. The proposed hypothesis test is applied to two real data sets: the annual real GDP per capita of six European countries, and quarterly real GDP per capita of five European countries. The application results demonstrate that the proposed test displays reasonably good performance in classifying relatively short time series.