118 resultados para parcel-scale spatial analysis
Resumo:
Suicide has drawn much attention from both the scientific community and the public. Examining the impact of socio-environmental factors on suicide is essential in developing suicide prevention strategies and interventions, because it will provide health authorities with important information for their decision-making. However, previous studies did not examine the impact of socio-environmental factors on suicide using a spatial analysis approach. The purpose of this study was to identify the patterns of suicide and to examine how socio-environmental factors impact on suicide over time and space at the Local Governmental Area (LGA) level in Queensland. The suicide data between 1999 and 2003 were collected from the Australian Bureau of Statistics (ABS). Socio-environmental variables at the LGA level included climate (rainfall, maximum and minimum temperature), Socioeconomic Indexes for Areas (SEIFA) and demographic variables (proportion of Indigenous population, unemployment rate, proportion of population with low income and low education level). Climate data were obtained from Australian Bureau of Meteorology. SEIFA and demographic variables were acquired from ABS. A series of statistical and geographical information system (GIS) approaches were applied in the analysis. This study included two stages. The first stage used average annual data to view the spatial pattern of suicide and to examine the association between socio-environmental factors and suicide over space. The second stage examined the spatiotemporal pattern of suicide and assessed the socio-environmental determinants of suicide, using more detailed seasonal data. In this research, 2,445 suicide cases were included, with 1,957 males (80.0%) and 488 females (20.0%). In the first stage, we examined the spatial pattern and the determinants of suicide using 5-year aggregated data. Spearman correlations were used to assess associations between variables. Then a Poisson regression model was applied in the multivariable analysis, as the occurrence of suicide is a small probability event and this model fitted the data quite well. Suicide mortality varied across LGAs and was associated with a range of socio-environmental factors. The multivariable analysis showed that maximum temperature was significantly and positively associated with male suicide (relative risk [RR] = 1.03, 95% CI: 1.00 to 1.07). Higher proportion of Indigenous population was accompanied with more suicide in male population (male: RR = 1.02, 95% CI: 1.01 to 1.03). There was a positive association between unemployment rate and suicide in both genders (male: RR = 1.04, 95% CI: 1.02 to 1.06; female: RR = 1.07, 95% CI: 1.00 to 1.16). No significant association was observed for rainfall, minimum temperature, SEIFA, proportion of population with low individual income and low educational attainment. In the second stage of this study, we undertook a preliminary spatiotemporal analysis of suicide using seasonal data. Firstly, we assessed the interrelations between variables. Secondly, a generalised estimating equations (GEE) model was used to examine the socio-environmental impact on suicide over time and space, as this model is well suited to analyze repeated longitudinal data (e.g., seasonal suicide mortality in a certain LGA) and it fitted the data better than other models (e.g., Poisson model). The suicide pattern varied with season and LGA. The north of Queensland had the highest suicide mortality rate in all the seasons, while there was no suicide case occurred in the southwest. Northwest had consistently higher suicide mortality in spring, autumn and winter. In other areas, suicide mortality varied between seasons. This analysis showed that maximum temperature was positively associated with suicide among male population (RR = 1.24, 95% CI: 1.04 to 1.47) and total population (RR = 1.15, 95% CI: 1.00 to 1.32). Higher proportion of Indigenous population was accompanied with more suicide among total population (RR = 1.16, 95% CI: 1.13 to 1.19) and by gender (male: RR = 1.07, 95% CI: 1.01 to 1.13; female: RR = 1.23, 95% CI: 1.03 to 1.48). Unemployment rate was positively associated with total (RR = 1.40, 95% CI: 1.24 to 1.59) and female (RR=1.09, 95% CI: 1.01 to 1.18) suicide. There was also a positive association between proportion of population with low individual income and suicide in total (RR = 1.28, 95% CI: 1.10 to 1.48) and male (RR = 1.45, 95% CI: 1.23 to 1.72) population. Rainfall was only positively associated with suicide in total population (RR = 1.11, 95% CI: 1.04 to 1.19). There was no significant association for rainfall, minimum temperature, SEIFA, proportion of population with low educational attainment. The second stage is the extension of the first stage. Different spatial scales of dataset were used between the two stages (i.e., mean yearly data in the first stage, and seasonal data in the second stage), but the results are generally consistent with each other. Compared with other studies, this research explored the variety of the impact of a wide range of socio-environmental factors on suicide in different geographical units. Maximum temperature, proportion of Indigenous population, unemployment rate and proportion of population with low individual income were among the major determinants of suicide in Queensland. However, the influence from other factors (e.g. socio-culture background, alcohol and drug use) influencing suicide cannot be ignored. An in-depth understanding of these factors is vital in planning and implementing suicide prevention strategies. Five recommendations for future research are derived from this study: (1) It is vital to acquire detailed personal information on each suicide case and relevant information among the population in assessing the key socio-environmental determinants of suicide; (2) Bayesian model could be applied to compare mortality rates and their socio-environmental determinants across LGAs in future research; (3) In the LGAs with warm weather, high proportion of Indigenous population and/or unemployment rate, concerted efforts need to be made to control and prevent suicide and other mental health problems; (4) The current surveillance, forecasting and early warning system needs to be strengthened, to trace the climate and socioeconomic change over time and space and its impact on population health; (5) It is necessary to evaluate and improve the facilities of mental health care, psychological consultation, suicide prevention and control programs; especially in the areas with low socio-economic status, high unemployment rate, extreme weather events and natural disasters.
Long-term exposure to gaseous air pollutants and cardio-respiratory mortality in Brisbane, Australia
Resumo:
Air pollution is ranked by the World Health Organisation as one of the top ten contributors to the global burden of disease and injury. Exposure to gaseous air pollutants, even at a low level, has been associated with cardiorespiratory diseases (Vedal, Brauer et al. 2003). Most recent epidemiological studies of air pollution have used time-series analyses to explore the relationship between daily mortality or morbidity and daily ambient air pollution concentrations based on the same day or previous days (Hajat, Armstrong et al. 2007). However, most of the previous studies have examined the association between air pollution and health outcomes using air pollution data from a single monitoring site or average values from a few monitoring sites to represent the whole population of the study area. In fact, for a metropolitan city, ambient air pollution levels may differ significantly among the different areas. There is increasing concern that the relationships between air pollution and mortality may vary with geographical area (Chen, Mengersen et al. 2007). Additionally, some studies have indicated that socio-economic status can act as a confounder when investigating the relation between geographical location and health (Scoggins, Kjellstrom et al. 2004). This study examined the spatial variation in the relationship between long-term exposure to gaseous air pollutants (including nitrogen dioxide (NO2), ozone (O3) and sulphur dioxide (SO2)), and cardiorespiratory mortality in Brisbane, Australia, during the period 1996 - 2004.
Resumo:
Nature Refuges encompass the second largest extent of protected area estate in Queensland. Major problems exist in the data capture, map presentation, data quality and integrity of these boundaries. The spatial accuracies/inaccuracies of the Nature Refuge administrative boundaries directly influence the ability to preserve valuable ecosystems by challenging negative environmental impacts on these properties. This research work is about supporting the Nature Refuge Programs efforts to secure Queensland’s natural and cultural values on private land by utilising GIS and its advanced functionalities. The research design organizes and enters Queensland’s Nature Refuge boundaries into a spatial environment. Survey quality data collection techniques such as the Global Positioning Systems (GPS) are investigated to capture Nature Refuge boundary information. Using the concepts of map communication GIS Cartography is utilised for the protected area plan design. New spatial datasets are generated facilitating the effectiveness of investigative data analysis. The geodatabase model developed by this study adds rich GIS behaviour providing the capability to store, query, and manipulate geographic information. It provides the ability to leverage data relationships and enforces topological integrity creating savings in customization and productivity. The final phase of the research design incorporates the advanced functions of ArcGIS. These functions facilitate building spatial system models. The geodatabase and process models developed by this research can be easily modified and the data relating to mining can be replaced by other negative environmental impacts affecting the Nature Refuges. Results of the research are presented as graphs and maps providing visual evidence supporting the usefulness of GIS as means for capturing, visualising and enhancing spatial quality and integrity of Nature Refuge boundaries.
Resumo:
The concept of organismic asymmetry refers to an inherent bias for seeking explanations of human performance and behaviour based on internal mechanisms and referents. A weakness in this tendency is a failure to consider the performer–environment relationship as the relevant scale of analysis. In this paper we elucidate the philosophical roots of the bias and discuss implications of organismic asymmetry for sport science and performance analysis, highlighting examples in psychology, sports medicine and biomechanics.
Resumo:
Using GIS to evaluate travel behaviour is an important technique to increase our understanding of the relationship between accessibility and transport demand. In this paper, the activity space concept was used to identify the nature of participation in activities (or lack of it) amongst a group of students using a 2 day travel-activity diary. Three different indicators such as the number of unique locations visited, average daily distance travelled, and average daily activity duration were used to measure the size of activity spaces. These indicators reflect levels of accessibility, personal mobility, and the extent of participation respectively. Multiple regression analyses were used to assess the impacts of students socio-economic status and the spatial characteristics of home location. Although no differences were found in the levels of accessibility and the extent of participation measures, home location with respect to a demand responsive transport (DRT) service was found to be the most important determinant of their mobility patterns. Despite being able to travel longer distances, students who live outside of the DRT service area were found to be temporally excluded from some opportunities. Student activity spaces were also visualised within a GIS environment and a spatial analysis was conducted to underpin the evaluation of the performance of the DRT. This approach was also used to identify the activity spaces of individuals that are geographically excluded from the service. Evaluation of these results indicated that although the service currently covers areas of high demand, 90% of the activity spaces remained un-served by the DRT service. Using this data six new routes were designed to meet the coverage goal of public transport based on a measure of network impedance based on inverse activity density. Following assessment of public transport service coverage, the study was extended using a Spatial Multi Criteria Evaluation (SMCE) technique to assess the effect of service provision on patronage.
Resumo:
Traditionally, transport disadvantage has been identified using accessibility analysis although the effectiveness of the accessibility planning approach to improving access to goods and services is not known. This paper undertakes a comparative assessment of measures of mobility, accessibility, and participation used to identify transport disadvantage using the concept of activity spaces. A 7 day activity-travel diary data for 89 individuals was collected from two case study areas located in rural Northern Ireland. A spatial analysis was conducted to select the case study areas using criteria derived from the literature. The criteria are related to the levels of area accessibility and area mobility which are known to influence the nature of transport disadvantage. Using the activity-travel diary data individuals weekly as well as day to day variations in activity-travel patterns were visualised. A model was developed using the ArcGIS ModelBuilder tool and was run to derive scores related to individual levels of mobility, accessibility, and participation in activities from the geovisualisation. Using these scores a multiple regression analysis was conducted to identify patterns of transport disadvantage. This study found a positive association between mobility and accessibility, between mobility and participation, and between accessibility and participation in activities. However, area accessibility and area mobility were found to have little impact on individual mobility, accessibility, and participation in activities. Income vis-àvis ´ car-ownership was found to have a significant impact on individual levels of mobility, and accessibility; whereas participation in activities were found to be a function of individual levels of income and their occupational status.
Resumo:
Genetic research of complex diseases is a challenging, but exciting, area of research. The early development of the research was limited, however, until the completion of the Human Genome and HapMap projects, along with the reduction in the cost of genotyping, which paves the way for understanding the genetic composition of complex diseases. In this thesis, we focus on the statistical methods for two aspects of genetic research: phenotype definition for diseases with complex etiology and methods for identifying potentially associated Single Nucleotide Polymorphisms (SNPs) and SNP-SNP interactions. With regard to phenotype definition for diseases with complex etiology, we firstly investigated the effects of different statistical phenotyping approaches on the subsequent analysis. In light of the findings, and the difficulties in validating the estimated phenotype, we proposed two different methods for reconciling phenotypes of different models using Bayesian model averaging as a coherent mechanism for accounting for model uncertainty. In the second part of the thesis, the focus is turned to the methods for identifying associated SNPs and SNP interactions. We review the use of Bayesian logistic regression with variable selection for SNP identification and extended the model for detecting the interaction effects for population based case-control studies. In this part of study, we also develop a machine learning algorithm to cope with the large scale data analysis, namely modified Logic Regression with Genetic Program (MLR-GEP), which is then compared with the Bayesian model, Random Forests and other variants of logic regression.
Resumo:
Online learning algorithms have recently risen to prominence due to their strong theoretical guarantees and an increasing number of practical applications for large-scale data analysis problems. In this paper, we analyze a class of online learning algorithms based on fixed potentials and nonlinearized losses, which yields algorithms with implicit update rules. We show how to efficiently compute these updates, and we prove regret bounds for the algorithms. We apply our formulation to several special cases where our approach has benefits over existing online learning methods. In particular, we provide improved algorithms and bounds for the online metric learning problem, and show improved robustness for online linear prediction problems. Results over a variety of data sets demonstrate the advantages of our framework.
Resumo:
Young novice drivers are significantly more likely to be killed or injured in car crashes than older, experienced drivers. Graduated driver licensing (GDL), which allows the novice to gain driving experience under less-risky circumstances, has resulted in reduced crash incidence; however, the driver's psychological traits are ignored. This paper explores the relationships between gender, age, anxiety, depression, sensitivity to reward and punishment, sensation-seeking propensity, and risky driving. Participants were 761 young drivers aged 17–24 (M= 19.00, SD= 1.56) with a Provisional (intermediate) driver's licence who completed an online survey comprising socio-demographic questions, the Impulsive Sensation Seeking Scale, Kessler's Psychological Distress Scale, the Sensitivity to Punishment and Sensitivity to Reward Questionnaire, and the Behaviour of Young Novice Drivers Scale. Path analysis revealed depression, reward sensitivity, and sensation-seeking propensity predicted the self-reported risky behaviour of the young novice drivers. Gender was a moderator; and the anxiety level of female drivers also influenced their risky driving. Interventions do not directly consider the role of rewards and sensation seeking, or the young person's mental health. An approach that does take these variables into account may contribute to improved road safety outcomes for both young and older road users.
Resumo:
A difference appears to exist between stressors reported for nurses and allied health professionals working in mental health. Prominent stressors for mental health nurses include workload, administration duties and a lack of resources. Whilst these also appear to be stressors for allied health professionals, the stressor 'professional self-doubt' has also been reported for social workers. This study aimed to examine the extent to which community mental health professionals could be identified as belonging to the nursing profession or an allied health profession based on their perceived sources of stress. Ninety-eight community mental health nurses and 85 allied health professionals working in Victoria's public mental health services completed the Mental Health Professionals Stress Scale. Discriminant analysis was utilised to test the predictive value of stressors to identify profession. The main stressors reported by nurses were workload, a lack of resources and organisational problems. For allied health professionals the highest reported stressors were workload, a lack of resources, client related difficulties and organisational problems. Mental health professionals in this study could not be identified as belonging to the nursing profession or an allied health profession based on their identified sources of stress. It could well be reflective of the shift to homogenous roles in mental health services. With this being the case, there may be benefits in implementing stress reducing strategies at an organisational level.
Resumo:
The current rapid urban growth throughout the world manifests in various ways and historically cities have grown, similarly, alternately or simultaneously between planned extensions and organic informal settlements (Mumford, 1989). Within cities different urban morphological regions can reveal different contexts of economic growth and/or periods of dramatic social/technological change (Whitehand, 2001, 105). Morpho-typological study of alternate contexts can present alternative models and contribute to the present discourse which questions traditional paradigms of urban planning and design (Todes et al, 2010). In this study a series of cities are examined as a preliminary exploration into the urban morphology of cities in ‘humid subtropical’ climates. From an initial set of twenty, six cities were selected: Sao Paulo, Brazil; Jacksonville, USA; Maputo, Mozambique; Kanpur, India; Hong Kong, China; and Brisbane, Australia. The urban form was analysed from satellite imagery at a constant scale. Urban morphological regions (types) were identified as those demonstrating particular consistant characteristics of form (density, typology and pattern) different to their surroundings when examined at a constant scale. This analysis was correlated against existing data and literature discussing the proliferation of two types of urban development, ‘informal settlement’ (defined here as self-organised communities identifiable but not always synonymous with ‘slums’) and ‘suburbia’ (defined here as master planned communities of generally detached houses prevalent in western society) - the extreme ends of a hypothetical spectrum from ‘planned’ to ‘spontaneous’ urban development. Preliminary results show some cities contain a wide variety of urban form ranging from the highly organic ‘self-organised’ type to the highly planned ‘master planned community’ (in the case of Sao Paulo) while others tend to fall at one end of the planning spectrum or the other (more planned in the cases of Brisbane and Jacksonville; and both highly planned and highly organic in the case of Maputo). Further research will examine the social, economical and political drivers and controls which lead to this diversity or homogeneity of urban form and speculates on the role of self-organisation as a process for the adaptation of urban form.
Resumo:
Urban renewal is a significant issue in developed urban areas, with a particular problem for urban planners being redevelopment of land to meet demand whilst ensuring compatibility with existing land use. This paper presents a geographic information systems (GIS)-based decision support tool (called LUDS) to quantitatively assess land-use suitability for site redevelopment in urban renewal areas. This consists of a model for the suitability analysis and an affiliated land-information database for residential, commercial, industrial, G/I/C (government/institution/community) and open space land uses. Development has occurred with support from interviews with industry experts, focus group meetings and an experimental trial, combined with several advanced techniques and tools, including GIS data processing and spatial analysis, multi-criterion analysis, as well as the AHP method for constructing the model and database. As demonstrated in the trial, LUDS assists planners in making land-use decisions and supports the planning process in assessing urban land-use suitability for site redevelopment. Moreover, it facilitates public consultation (participatory planning) by providing stakeholders with an explicit understanding of planners' views.
Resumo:
Purpose – As a consequence of rapid urbanisation and globalisation, cities have become the engines of population and economic growth. Hence, natural resources in and around the cities have been exposed to externalities of urban development processes. This paper introduces a new sustainability assessment approach that is tested in a pilot study. The paper aims to assist policy-makers and planners investigating the impacts of development on environmental systems, and produce effective policies for sustainable urban development. Design/methodology/approach – The paper introduces an indicator-based indexing model entitled “Indexing Model for the Assessment of Sustainable Urban Ecosystems” (ASSURE). The ASSURE indexing model produces a set of micro-level environmental sustainability indices that is aimed to be used in the evaluation and monitoring of the interaction between human activities and urban ecosystems. The model is an innovative approach designed to assess the resilience of ecosystems towards impacts of current development plans and the results serve as a guide for policymakers to take actions towards achieving sustainability. Findings – The indexing model has been tested in a pilot case study within the Gold Coast City, Queensland, Australia. This paper presents the methodology of the model and outlines the preliminary findings of the pilot study. The paper concludes with a discussion on the findings and recommendations put forward for future development and implementation of the model. Originality/value – Presently, there is a few sustainability indices developed to measure the sustainability at local, regional, national and international levels. However, due to challenges in data collection difficulties and availability of local data, there is no effective assessment model at the microlevel that the assessment of urban ecosystem sustainability accurately. The model introduced in this paper fills this gap by focusing on parcel-scale and benchmarking the environmental performance in micro-level.
Resumo:
How and why football referees made decisions was investigated. A constructivist grounded theory methodology was undertaken to tap into the experiential knowledge of referees. The participant cohort comprised 7 A-League referees (aged 23 to 35) and 8 local Brisbane league referees (aged 20 to 50), spanning the lowest to highest levels of competition in men’s football in Australia. Results found that referees used ‘four pillars’ to underpin their judgments, these were conceptual notions of: safety, fairness, accuracy and entertainment. A fifth pillar ‘consistency’ referred to the referee’s ‘contextual sensitivity’. Results were explained using an ecological dynamics framework that emphasises the individual-environment scale of analysis. It was concluded that interacting constraints shape emergent decision-making in referees which are nested in task goals.