145 resultados para intramolecular hydrogen bonding


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the title compound, C8H12NO+ C7H3N2O6-, the anilinium and hydroxyl protons of the cation result in N-H...O, N-H..(O,O) and O-H...O hydrogen-bonding interactions with carboxylate O atom acceptors, forming a two-dimensional network structure. An intermolecular C-H...O interaction is also present.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structure of 8-amino-2-naphthalenesulfonic acid monohydrate (1,7-Cleve's acid hydrate), C10H9NO3S.H2O, shows the presence of a sulfonate-aminium group zwitterion, both groups and the water molecule of solvation giving cyclic R3/3(8) intermolecular hydrogen-bonding interactions forming chains which extend down a axis of the unit cell. Additional peripheral associations, including weak aromatic ring pi-pi interactions [centroid-centroid distance 3.6299(15)A], result in a two-dimensional sheet structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structure of the 1:1 proton-transfer compound of 4-chloroaniline with 4,5-dichlorophthalic acid (DCPA), viz. C6H7ClN+ C8H3Cl2O4-, has been determined at 130 K. The non-planar hydrogen phthalate anions and the 4-chloroanilinium cations form two-dimensional O-H...O and N-H...O hydrogen-bonded substructures which have no peripheral extension. Between the sheets there are weak \p--\p associations between alternating cation--anion aromatic ring systems [shortest centroid separation, 3.735(4)A].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The crystal structure of the hydrated proton-transfer compound of the drug quinacrine [rac-N'-(6-chloro-2-methoxyacridin-9-yl)-N,N-diethylpentane-1,4-diamine] with 4,5-dichlorophthalic acid, C23H32ClN3O2+ . 2(C8H3Cl2O4-).4H2O (I), has been determined at 200 K. The four labile water molecules of solvation form discrete ...O--H...O--H... hydrogen-bonded chains parallel to the quinacrine side chain, the two N--H groups of which act as hydrogen-bond donors for two of the water acceptor molecules. The other water molecules, as well as the acridinium H atom, also form hydrogen bonds with the two anion species and extend the structure into two-dimensional sheets. Between these sheets there are also weak cation--anion and anion--anion pi-pi aromatic ring interactions. This structure represents only the third example of a simple quinacrine derivative for which structural data are available but differs from the other two in that it is unstable in the X-ray beam due to efflorescence, probably associated with the destruction of the unusual four-membered water chain structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structures of two 1:1 proton-transfer red-black dye compounds formed by reaction of aniline yellow [4-(phenyldiazenyl)aniline] with 5-sulfosalicylic acid and benzenesulfonic acid, and a 1:2 nontransfer adduct compound with 3,5-dinitrobenzoic acid have been determined at either 130 or 200 K. The compounds are 2-(4-aminophenyl)-1-phenylhydrazin-1-ium 3-carboxy-4-hydroxybenzenesulfonate methanol solvate, C12H12N3+.C7H5O6S-.CH3OH (I), 2-(4-aminophenyl)-1-hydrazin-1-ium 4-(phenydiazinyl)anilinium bis(benzenesulfonate), 2C12H12N3+.2C6H5O3S-, (II) and 4-(phenyldiazenyl)aniline-3,5-dinitrobenzoic acid (1/2) C12H11N3.2C~7~H~4~N~2~O~6~, (III). In compound (I) the diaxenyl rather than the aniline group of aniline yellow is protonated and this group subsequently akes part in a primary hydrogen-bonding interaction with a sulfonate O-atom acceptor, producing overall a three-dimensional framework structure. A feature of the hydrogen bonding in (I) is a peripheral edge-on cation-anion association involving aromatic C--H...O hydrogen bonds, giving a conjoint R1/2(6)R1/2(7)R2/1(4)motif. In the dichroic crystals of (II), one of the two aniline yellow species in the asymmetric unit is diazenyl-group protonated while in the other the aniline group is protonated. Both of these groups form hydrogen bonds with sulfonate O-atom acceptors and thee, together with other associations give a one-dimensional chain structure. In compound (III), rather than proton-transfer, there is a preferential formation of a classic R2/2(8) cyclic head-to-head hydrogen-bonded carboxylic acid homodimer between the two 3,5-dinitrobenzoic acid molecules, which in association with the aniline yellow molecule that is disordered across a crystallographic inversion centre, result in an overall two-dimensional ribbon structure. This work has shown the correlation between structure and observed colour in crystalline aniline yellow compounds, illustrated graphically in the dichroic benzenesulfonate compound.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the structure of the guanidinium salt of quinaldic acid, CH6N3+ C10H6NO2-, the asymmetric unit contains two independent cations and anions having similar inter-species hydrogen-bonding environments which include cyclic R2/2(8), R1/2(6) and R2/1(5) associations. These and additional weak aromatic ring pi-pi interactions [minimum ring centroid separation, 3.6621(16)A] give a two-dimensional layered structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interactions of phenyldithioesters with gold nanoparticles (AuNPs) have been studied by monitoring changes in the surface plasmon resonance (SPR), depolarised light scattering, and surface enhanced Raman spectroscopy (SERS). Changes in the SPR indicated that an AuNP-phenyldithioester charge transfer complex forms in equilibrium with free AuNPs and phenyldithioester. Analysis of the Langmuir binding isotherms indicated that the equilibrium adsorption constant, Kads, was 2.3 ± 0.1 × 106 M−1, which corresponded to a free energy of adsorption of 36 ± 1 kJ mol−1. These values are comparable to those reported for interactions of aryl thiols with gold and are of a similar order of magnitude to moderate hydrogen bonding interactions. This has significant implications in the application of phenyldithioesters for the functionalization of AuNPs. The SERS results indicated that the phenyldithioesters interact with AuNPs through the C═S bond, and the molecules do not disassociate upon adsorption to the AuNPs. The SERS spectra are dominated by the portions of the molecule that dominate the charge transfer complex with the AuNPs. The significance of this in relation to the use of phenyldithioesters for molecular barcoding of nanoparticle assemblies is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the structure of the title compound, C2H10N22+·C8H2Cl2O42-, the dications and dianions form hydrogen-bonded ribbon substructures which enclose conjoint cyclic R21(7), R12(7) and R42(8) associations and extend down the c-axis direction. These ribbons inter-associate down b, giving a two-dimensional sheet structure. In the dianions, one of the carboxylate groups is essentially coplanar with the benzene ring, while the other is normal to it [C-C-C-O torsion angles = 177.67 (12) and 81.94 (17)°, respectively].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Near-infrared spectroscopy is a somewhat unutilised technique for the study of minerals. The technique has the ability to determine water content, hydroxyl groups and transition metals. In this paper we show the application of NIR spectroscopy to the study of selected minerals. The structure and spectral properties of two Cu-tellurite minerals graemite and teineite are compared with bismuth containing tellurite mineral smirnite by the application of NIR and IR spectroscopy. The position of Cu2+ bands and their splitting in the electronic spectra of tellurites are in conformity with octahedral geometry distortion. The spectral pattern of smirnite resembles graemite and the observed band at 10855 cm-1 with a weak shoulder at 7920 cm-1 is identified as due to Cu2+ ion. Any transition metal impurities may be identified by their bands in this spectral region. Three prominent bands observed in the region of 7200-6500 cm-1 are the overtones of water whilst the weak bands observed near 6200 cm-1in tellurites may be attributed to the hydrogen bonding between (TeO3)2- and H2O. The observation of a number of bands centred at around 7200 cm-1 confirms molecular water in tellurite minerals. A number of overlapping bands in the low wavenumbers 4500-4000 cm-1 is the result of combinational modes of (TeO3)2−ion. The appearance of the most intense peak at 5200 cm-1 with a pair of weak bands near 6000 cm-1 is a common feature in all the spectra and is related to the combinations of OH vibrations of water molecules, and bending vibrations ν2 (δ H2O). Bending vibrations δ H2O observed in the IR spectra shows a single band for smirnite at 1610 cm-1. The resolution of this band into number of components is evidenced for non-equivalent types of molecular water in graemite and teineite. (TeO3)2- stretching vibrations are characterized by three main absorptions at 1080, 780 and 695 cm-1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The unusual (1:1) complex ‘adduct’ salt of copper(II) with 4,5-dichlorophthalic acid (H2DCPA), having formula [Cu(H2O)4(C8H3Cl2O4) (C8H4Cl2O4)] . (C8H3Cl2O4) has been synthesized and characterized using single-crystal X-ray diffraction. Crystals are monoclinic, space group P21/c, with Z = 4 in a cell with dimensions a = 20.1376(7), b =12.8408(4) c = 12.1910(4) Å, β = 105.509(4)o. The complex is based on discrete tetragonally distorted octahedral [CuO6] coordination centres with the four water ligands occupying the square planar sites [Cu-O, 1.962(4)-1.987(4) Å] and the monodentate carboxyl-O donors of two DCPA ligand species in the axial sites. The first of these bonds [Cu-O, 2.341(4) Å] is with an oxygen of a HDCPA monoanion, the second with an oxygen of a H2DCPA acid species [Cu-O, 2.418(4) Å]. The un-coordinated ‘adduct’ molecule is a HDCPA counter anion which is strongly hydrogen-bonded to the coordinated H2DCPA ligand [O… O, 2.503(6) Å] while a number of peripheral intra- and intermolecular hydrogen-bonding interactions give a two-dimensional network structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The 1:1 proton-transfer compound of the potent substituted amphetamine hallucinogen (R)-1-(8-bromobenzo[1,2-b; 4,5-b']difuran-4-yl)-2-aminopropane (common trivial name 'bromodragonfly') with 3,5-dinitrosalicylic acid, 1-(8-bromobenzo[1,2-b;4,5-b']difuran-4-yl)-2-mmoniopropane 2-carboxy-4,6-dinitrophenolate, C13H13BrNO2+ C7H3N2O7- forms hydrogen-bonded cation-anion chain substructures comprising undulating head-to-tail anion chains formed through C(8) carboxyl O-H...O(nitro) associations and incorporating the aminium groups of the cations. The intra-chain cation-anion hydrogen-bonding associations feature proximal cyclic R33(8) interactions involving both a N+-H...O(phenolate) and the carboxyl O--H...O(nitro)associations. Also present are aromatic pi-pi ring interactions [minimum ring centroid separation, 3.566(2)A; inter-plane dihedral angle, 5.13(1)deg]. A lateral hydrogen-bonding interaction between the third aminium proton and a carboxyl O acceptor link the chain substructures giving a two-dimensional sheet structure. This determination represents the first of any form of this compound and confirms that it has the (R) absolute configuration. The atypical crystal stability is attributed both to the hydrogen-bonded chain substructures provided by the anions, which accommodate the aminium proton-donor groups of the cations and give cross-linking, and to the presence of cation--anion aromatic ring pi-pi interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the title salt, C12H11N2O2+·C7H4NO5-, the cations and anions interact through asymmetric cyclic pyridinium-carboxylate N-HO,O' hydrogen-bonding associations [graph set R12(4)], giving discrete heterodimers having weak cation-anion - aromatic ring interactions [minimum ring centroid separation = 3.7116 (9) Å]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the structure of the title compound, the salt 2(C12H10N3O4+) (C12H8O6S2)2- . 3H2O, determined at 173 K, the biphenyl-4,4'-disulfonate dianions lie across crystallographic inversion centres with the sulfonate groups interacting head-to-head through centrosymmetric cyclic bis(water)-bridged hydrogen-bonding associations [graph set R4/4(11)], forming chain structures. The 2-(2,4-dinitrobenzyl)pyridinium cations are linked to these chains through N+-H...O(water) hydrogen bonds and a two-dimensional network structure is formed through water bridges between sulfonate and 2-nitro O atoms, while the structure also has weak cation--anion pi-pi aromatic ring interactions [minimum ring centroid separation 3.8441(13)A].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Raman spectroscopy has been used to study the arsenate minerals haidingerite Ca(AsO3OH)•H2O and brassite Mg(AsO3OH)•4H2O. Intense Raman bands in haidingerite spectrum observed at 745 and 855 cm-1 are assigned to the (AsO3OH)2- ν3 antisymmetric stretching and ν1 symmetric stretching vibrational modes. For brassite two similarly assigned intense bands are found at 809 and 862 cm-1. The observation of multiple Raman bands in the (AsO3OH)2- stretching and bending regions suggests that the arsenate tetrahedrons in the crystal structures of both minerals studied are strongly distorted. Broad Raman bands observed at 2842 cm-1 for haidingerite and 3035 cm-1 for brassite indicate strong hydrogen bonding of water molecules in the structure of these minerals. OH…O hydrogen bond lengths were calculated from the Raman spectra based on empiric relations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the structure of the title compound, the salt C12H10N3O4+ C7H3N2O72-, the cations and the anions are linked by a single N+-H...O(carboxyl) hydrogen bond, the discrete cation-anion unit having no intermolecular associations other than weak cation--anion aromatic ring pi--pi interactions [ring centroid separation, 3.7320(14)A] and a number of weak inter-unit aromatic C-H...O contacts.