55 resultados para inductive transcription
Independent functions of yeast Pcf11p in pre-mRNA 3' end processing and in transcription termination
Resumo:
Pcf11p, an essential subunit of the yeast cleavage factor IA, is required for pre‐mRNA 3′ end processing, binds to the C‐terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAP II) and is involved in transcription termination. We show that the conserved CTD interaction domain (CID) of Pcf11p is essential for cell viability. Interestingly, the CTD binding and 3′ end processing activities of Pcf11p can be functionally uncoupled from each other and provided by distinct Pcf11p fragments in trans. Impaired CTD binding did not affect the 3′ end processing activity of Pcf11p and a deficiency of Pcf11p in 3′ end processing did not prevent CTD binding. Transcriptional run‐on analysis with the CYC1 gene revealed that loss of cleavage activity did not correlate with a defect in transcription termination, whereas loss of CTD binding did. We conclude that Pcf11p is a bifunctional protein and that transcript cleavage is not an obligatory step prior to RNAP II termination.
Resumo:
A typical low power IPT system employs an H-Bridge converter with a simple control strategy to generate a high frequency current from DC power supply. This paper proposes a cascaded multilevel converter for bidirectional IPT (BIPT) systems, which is suitable for low to medium power applications as well as for situations such as PV cells where several individual DC sources are to be utilized. A novel modulation strategy is proposed for the multilevel converter with the aim of minimizing switching losses. Series - Series (SS) compensation circuit is adopted for the IPT system and a mathematical model is presented to minimize the coil losses of the system under varying output power. Theoretical results presented in comparison to the simulations to demonstrate the applicability of the proposed concept and the validity of the developed model. The experimental results show the feasibility of the proposed phase shift modulation.
Resumo:
Oncogene-induced senescence (OIS) is a potent tumor-suppressive mechanism that is thought to come at the cost of aging. The Forkhead box O (FOXO) transcription factors are regulators of life span and tumor suppression. However, whether and how FOXOs function in OIS have been unclear. Here, we show a role for FOXO4 in mediating senescence by the human BRAFV600E oncogene, which arises commonly in melanoma. BRAFV600E signaling through mitogen-activated protein kinase/extracellular signal-regulated kinase kinase resulted in increased reactive oxygen species levels and c-Jun NH 2 terminal kinase-mediated activation of FOXO4 via its phosphorylation on Thr223, Ser226, Thr447, and Thr451. BRAFV600E-induced FOXO4 phosphorylation resulted in p21cip1-mediated cell senescence independent of p16 ink4a or p27kip1. Importantly, melanocyte-specific activation of BRAFV600E in vivo resulted in the formation of skin nevi expressing Thr223/Ser226-phosphorylated FOXO4 and elevated p21cip1. Together, these findings support a model in which FOXOs mediate a trade-off between cancer and aging.
Resumo:
Transcription is a fundamental step in gene expression, yet it remains poorly understood at a cellular level. Visualization of transcription sites and active genes has led to the suggestion that transcription occurs at discrete sites in the nucleus, termed transcription factories, where multiple active RNA polymerases are concentrated and anchored to a nuclear substructure. However, this concept is not universally accepted. This Review discusses the experimental evidence in support of the transcription factory model and the evidence that argues against such a spatially structured view of transcription. The transcription factory model has implications for the regulation of transcription initiation and elongation, for the organization of genes in the genome, for the co-regulation of genes and for genome instability.
Resumo:
Background The koala, Phascolarctos cinereus, is a biologically unique and evolutionarily distinct Australian arboreal marsupial. The goal of this study was to sequence the transcriptome from several tissues of two geographically separate koalas, and to create the first comprehensive catalog of annotated transcripts for this species, enabling detailed analysis of the unique attributes of this threatened native marsupial, including infection by the koala retrovirus. Results RNA-Seq data was generated from a range of tissues from one male and one female koala and assembled de novo into transcripts using Velvet-Oases. Transcript abundance in each tissue was estimated. Transcripts were searched for likely protein-coding regions and a non-redundant set of 117,563 putative protein sequences was produced. In similarity searches there were 84,907 (72%) sequences that aligned to at least one sequence in the NCBI nr protein database. The best alignments were to sequences from other marsupials. After applying a reciprocal best hit requirement of koala sequences to those from tammar wallaby, Tasmanian devil and the gray short-tailed opossum, we estimate that our transcriptome dataset represents approximately 15,000 koala genes. The marsupial alignment information was used to look for potential gene duplications and we report evidence for copy number expansion of the alpha amylase gene, and of an aldehyde reductase gene. Koala retrovirus (KoRV) transcripts were detected in the transcriptomes. These were analysed in detail and the structure of the spliced envelope gene transcript was determined. There was appreciable sequence diversity within KoRV, with 233 sites in the KoRV genome showing small insertions/deletions or single nucleotide polymorphisms. Both koalas had sequences from the KoRV-A subtype, but the male koala transcriptome has, in addition, sequences more closely related to the KoRV-B subtype. This is the first report of a KoRV-B-like sequence in a wild population. Conclusions This transcriptomic dataset is a useful resource for molecular genetic studies of the koala, for evolutionary genetic studies of marsupials, for validation and annotation of the koala genome sequence, and for investigation of koala retrovirus. Annotated transcripts can be browsed and queried at http://koalagenome.org
Resumo:
Unidirectional inductive power transfer (UIPT) systems allow loads to consume power while bidirectional IPT (BIPT) systems are more suitable for loads requiring two way power flow such as vehicle to grid (V2G) applications with electric vehicles (EVs). Many attempts have been made to improve the performance of BIPT systems. In a typical BIPT system, the output power is control using the pickup converter phase shift angle (PSA) while the primary converter regulates the input current. This paper proposes an optimized phase shift modulation strategy to minimize the coil losses of a series – series (SS) compensated BIPT system. In addition, a comprehensive study on the impact of power converters on the overall efficiency of the system is also presented. A closed loop controller is proposed to optimize the overall efficiency of the BIPT system. Theoretical results are presented in comparison to both simulations and measurements of a 0.5 kW prototype to show the benefits of the proposed concept. Results convincingly demonstrate the applicability of the proposed system offering high efficiency over a wide range of output power.
Resumo:
The exact phenotype of human periodontal ligament cells (hPDLCs) remains a controversial area. Basic fibroblast growth factor (FGF‑2) exhibits various functions and its effect on hPDLCs is also controversial. Therefore, the present study examined the effect of FGF‑2 on the growth and osteoblastic phenotype of hPDLCs with or without osteogenic inducers (dexamethasone and β‑glycerophosphate). FGF‑2 was added to defined growth culture medium and osteogenic inductive culture medium. Cell proliferation, osteogenic differentiation and mineralization were measured. The selected differentiation markers, Runx2, collagen type Ⅰ, α1 (Col1a1), osteocalcin (OCN) and epidermal growth factor receptor (EGFR), were investigated by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). Runx2 and OCN protein expression was measured by western blotting. FGF‑2 significantly increased the proliferation of hPDLCs, but did not affect alkaline phosphatase activity. RT‑qPCR analysis revealed enhanced mRNA expression of Runx2, OCN and EGFR, but suppressed Col1a1 gene expression in the absence of osteogenic inducers, whereas all these gene levels had no clear trend in their presence. The Runx2 protein expression was clearly increased, but the OCN protein level showed no evident trend. The mineralization assay demonstrated that FGF‑2 inhibited mineralized matrix deposition with osteogenic inducers. These results suggested that FGF‑2 induces the growth of immature hPDLCs, which is a competitive inhibitor of epithelial downgrowth, and suppresses their differentiation into mineralized tissue by affecting Runx2 expression. Therefore, this may lead to the acceleration of periodontal regeneration.
Resumo:
This thesis proposes a novel gate drive circuit to improve the switching performance of MOSFET power switches in power electronic converters. The proposed topology exploits the cascode configuration, allowing the minimisation of switching losses in the presence of practical circuit constraints, which enables efficiency and power density improvements. Switching characteristics of the new topology are investigated and key mechanisms that control the switching process are identified. Unique analysis tools and techniques are also developed to demonstrate the application of the cascode gate drive circuit for switching performance optimisation.
Resumo:
To gain insight into the mechanisms by which the Myb transcription factor controls normal hematopoiesis and particularly, how it contributes to leukemogenesis, we mapped the genome-wide occupancy of Myb by chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) in ERMYB myeloid progenitor cells. By integrating the genome occupancy data with whole genome expression profiling data, we identified a Myb-regulated transcriptional program. Gene signatures for leukemia stem cells, normal hematopoietic stem/progenitor cells and myeloid development were overrepresented in 2368 Myb regulated genes. Of these, Myb bound directly near or within 793 genes. Myb directly activates some genes known critical in maintaining hematopoietic stem cells, such as Gfi1 and Cited2. Importantly, we also show that, despite being usually considered as a transactivator, Myb also functions to repress approximately half of its direct targets, including several key regulators of myeloid differentiation, such as Sfpi1 (also known as Pu.1), Runx1, Junb and Cebpb. Furthermore, our results demonstrate that interaction with p300, an established coactivator for Myb, is unexpectedly required for Myb-mediated transcriptional repression. We propose that the repression of the above mentioned key pro-differentiation factors may contribute essentially to Myb's ability to suppress differentiation and promote self-renewal, thus maintaining progenitor cells in an undifferentiated state and promoting leukemic transformation. © 2011 The Author(s).
Resumo:
Runx2-Cbfal, a Runt transcription factor, plays important roles during skeletal development. It is required for differentiation and function of osteoblasts. In its absence, chondrocyte hypertrophy is severely impaired and there is no vascularization of cartilage templates during skeletal development. These tissue-specific functions of Runx2 are likely to be dependent on its interaction with other proteins. We have therefore searched for proteins that may modulate the activity of Runx2. The yeast two-hybrid system was used to identify a groucho homologue, Grg5, as a Runx2-interacting protein. Grg5 enhances Runx2 activity in a cell culture-based assay and by analyses of postnatal growth in mice we demonstrate that Grg5 and Runx2 interact genetically. We also show that Runx2 haploinsufficiency in the absence of Grg5 results in a more severe delay in ossification of cranial sutures and fontanels than occurs with Runx2 haploinsufficiency on a wild-type background. Finally, we find shortening of the proliferative and hypertrophic zones, and expansion of the resting zone in the growth plates of Runx2(+/-)Grg5(-/-) mice that are associated with reduced Ihh expression and Indian hedgehog (Ihh) signaling. We therefore conclude that Grg5 enhances Runx2 activity in vivo.