185 resultados para fuzzy sample entropy
Resumo:
This study examined the psychometric properties of an expanded version of the Algase Wandering Scale (Version 2) (AWS-V2) in a cross-cultural sample. A cross-sectional survey design was used. Study subjects were 172 English-speaking persons with dementia (PWD) from long-term care facilities in the USA, Canada, and Australia. Two or more facility staff rated each subject on the AWS-V2. Demographic and cognitive data (MMSE) were also obtained. Staff provided information on their own knowledge of the subject and of dementia. Separate factor analyses on data from two samples of raters each explained greater than 66% of the variance in AWS-V2 scores and validated four (persistent walking, navigational deficit, eloping behavior, and shadowing) of five factors in the original scale. Items added to create the AWS-V2 strengthened the shadowing subscale, failed to improve the routinized walking subscale, and added a factor, attention shifting as compared to the original AWS. Evidence for validity was found in significant correlations and ANOVAs between the AWS-V2 and most subscales with a single item indicator of wandering and with the MMSE. Evidence of reliability was shown by internal consistency of the AWS-V2 (0.87, 0.88) and its subscales (range 0.88 to 0.66), with Kappa for individual items (17 of 27 greater than 0.4), and ANOVAs comparing ratings across rater groups (nurses, nurse aids, and other staff). Analyses support validity and reliability of the AWS-V2 overall and for persistent walking, spatial disorientation, and eloping behavior subscales. The AWS-V2 and its subscales are an appropriate way to measure wandering as conceptualized within the Need-driven Dementia-compromised Behavior Model in studies of English-speaking subjects. Suggestions for further strengthening the scale and for extending its use to clinical applications are described.
Resumo:
Power system stabilizers (PSS) work well at the particular network configuration and steady state conditions for which they were designed. Once conditions change, their performance degrades. This can be overcome by an intelligent nonlinear PSS based on fuzzy logic. Such a fuzzy logic power system stabilizer (FLPSS) is developed, using speed and power deviation as inputs, and provides an auxiliary signal for the excitation system of a synchronous motor in a multimachine power system environment. The FLPSS's effect on the system damping is then compared with a conventional power system stabilizer's (CPSS) effect on the system. The results demonstrate an improved system performance with the FLPSS and also that the FLPSS is robust
Resumo:
In an open railway access market, the Infrastructure Provider (IP), upon the receipts of service bids from the Train Service Providers (TSPs), assigns track access rights according to its own business objectives and the merits of the bids; and produces the train service timetable through negotiations. In practice, IP chooses to negotiate with the TSPs one by one in such a sequence that IP optimizes its objectives. The TSP bids are usually very complicated, containing a large number of parameters in different natures. It is a difficult task even for an expert to give a priority sequence for negotiations from the contents of the bids. This study proposes the application of fuzzy ranking method to compare and prioritize the TSP bids in order to produce a negotiation sequence. The results of this study allow investigations on the behaviors of the stakeholders in bid preparation and negotiation, as well as evaluation of service quality in the open railway market.
Resumo:
Fuzzy logic has been applied to control traffic at road junctions. A simple controller with one fixed rule-set is inadequate to minimise delays when traffic flow rate is time-varying and likely to span a wide range. To achieve better control, fuzzy rules adapted to the current traffic conditions are used.
Resumo:
Traffic control at road junctions is one of the major concerns in most metropolitan cities. Controllers of various approaches are available and the required control action is the effective green-time assigned to each traffic stream within a traffic-light cycle. The application of fuzzy logic provides the controller with the capability to handle uncertain natures of the system, such as drivers’ behaviour and random arrivals of vehicles. When turning traffic is allowed at the junction, the number of phases in the traffic-light cycle increases. The additional input variables inevitably complicate the controller and hence slow down the decision-making process, which is critical in this real-time control problem. In this paper, a hierarchical fuzzy logic controller is proposed to tackle this traffic control problem at a 2-way road junction with turning traffic. The two levels of fuzzy logic controllers devise the minimum effective green-time and fine-tune it respectively at each phase of a traffic-light cycle. The complexity of the controller at each level is reduced with smaller rule-set. The performance of this hierarchical controller is examined by comparison with a fixed-time controller under various traffic conditions. Substantial delay reduction has been achieved as a result and the performance and limitation of the controller will be discussed.
Resumo:
With the recent regulatory reforms in a number of countries, railways resources are no longer managed by a single party but are distributed among different stakeholders. To facilitate the operation of train services, a train service provider (SP) has to negotiate with the infrastructure provider (IP) for a train schedule and the associated track access charge. This paper models the SP and IP as software agents and the negotiation as a prioritized fuzzy constraint satisfaction (PFCS) problem. Computer simulations have been conducted to demonstrate the effects on the train schedule when the SP has different optimization criteria. The results show that by assigning different priorities on the fuzzy constraints, agents can represent SPs with different operational objectives.
Resumo:
Traffic control at a road junction by a complex fuzzy logic controller is investigated. The increase in the complexity of junction means more number of input variables must be taken into account, which will increase the number of fuzzy rules in the system. A hierarchical fuzzy logic controller is introduced to reduce the number of rules. Besides, the increase in the complexity of the controller makes formulation of the fuzzy rules difficult. A genetic algorithm based off-line leaning algorithm is employed to generate the fuzzy rules. The learning algorithm uses constant flow-rates as training sets. The system is tested by both constant and time-varying flow-rates. Simulation results show that the proposed controller produces lower average delay than a fixed-time controller does under various traffic conditions.
Resumo:
Background: Loneliness and low mood are associated with significant negative health outcomes including poor sleep, but the strength of the evidence underlying these associations varies. There is strong evidence that poor sleep quality and low mood are linked, but only emerging evidence that loneliness and poor sleep are associated. Aims: To independently replicate the finding that loneliness and poor subjective sleep quality are associated and to extend past research by investigating lifestyle regularity as a possible mediator of relationships, since lifestyle regularity has been linked to loneliness and poor sleep. Methods: Using a cross-sectional design, 97 adults completed standardized measures of loneliness, lifestyle regularity, subjective sleep quality and mood. Results: Loneliness was a significant predictor of sleep quality. Lifestyle regularity was not a predictor of, nor associated with, mood, sleep quality or loneliness. Conclusions: This study provides an important independent replication of the association between poor sleep and loneliness. However, the mechanism underlying this link remains unclear. A theoretically plausible mechanism for this link, lifestyle regularity, does not explain the relationship between loneliness and poor sleep. The nexus between loneliness and poor sleep is unlikely to be broken by altering the social rhythm of patients who present with poor sleep and loneliness.
Resumo:
Research is indicating that individuals who present for DUI treatment may have competing substance abuse and mental health needs. This study aimed to examine the extent of such comorbidity issues among a sample of Texas DUI offenders. Method: Records of 36,372 DUI clients and 308,695 non-DUI clients admitted to Texas treatment programs between 2005 and 2008 were obtained from the State's administrative dataset. The data were analysed to identify the relationship between substance use, psychiatric problems, program completion and recidivism rates. Results: Analysis indicated that while non-DUI clients were more likely to present with more severe illicit substance use problems, DUI clients were more likely to have a primary problem with alcohol. Additionally, a cannabis use problem was also found to be significantly associated with DUI recidivism in the last year. In regards to mental health needs, a major finding was that depression was the most common psychiatric condition reported by DUI clients, including those with more than one DUI offence in the past year. This group were also more at risk of being diagnosed with Bipolar Disorder compared to the general population, and such a diagnosis was also associated with an increased likelihood of not completing treatment. Interestingly, female DUI and non-DUI clients were also more likely to be diagnosed with mental health problems compared to males, as well as more likely to be placed on medications at admission and have problems with methamphetamine, cocaine, and opiates. Conclusion: The findings highlight the complex competing needs of some DUI offenders who enter treatment. The results also suggest that there is a need to utilise mental health and substance abuse screening methods to ensure DUI offenders are directed towards appropriate treatment pathways as well as ensure that such interventions adequately cater for complex substance abuse and psychiatric needs.
Resumo:
This paper argues a model of adaptive design for sustainable architecture within a framework of entropy evolution. The spectrum of sustainable architecture consists of efficient use of energy and material resource in the life-cycle of buildings, active involvement of the occupants into micro-climate control within the building, and the natural environment as the physical context. The interactions amongst all the parameters compose a complex system of sustainable architecture design, of which the conventional linear and fragmented design technologies are insufficient to indicate holistic and ongoing environmental performance. The latest interpretation of the Second Law of Thermodynamics states a microscopic formulation of an entropy evolution of complex open systems. It provides a design framework for an adaptive system evolves for the optimization in open systems, this adaptive system evolves for the optimization of building environmental performance. The paper concludes that adaptive modelling in entropy evolution is a design alternative for sustainable architecture.
Resumo:
Evaluation, selection and finally decision making are all among important issues, which engineers face in long run of projects. Engineers implement mathematical and nonmathematical methods to make accurate and correct decisions, whenever needed. As extensive as these methods are, effects of any selected method on outputs achieved and decisions made are still suspicious. This is more controversial and challengeable, where evaluation is made among non-quantitative alternatives. In civil engineering and construction management problems, criteria include both quantitative and qualitative ones, such as aesthetic, construction duration, building and operation costs, and environmental considerations. As the result, decision making frequently takes place among non-quantitative alternatives. It should be noted that traditional comparison methods, including clear-cut and inflexible mathematics, have always been criticized. This paper demonstrates a brief review of traditional methods of evaluating alternatives. It also offers a new decision making method using, fuzzy calculations. The main focus of this research is some engineering issues, which have flexible nature and vague borders. Suggested method provides analyzability of evaluation for decision makers. It is also capable to overcome multi criteria and multi-referees problems. In order to ease calculations, a program named DeMA is introduced.
Resumo:
Magneto-rheological (MR) fluid damper is a semi-active control device that has recently received more attention by the vibration control community. But inherent nonlinear hysteresis character of magneto-rheological fluid dampers is one of the challenging aspects for utilizing this device to achieve high system performance. So the development of accurate model is necessary to take the advantage their unique characteristics. Research by others [3] has shown that a system of nonlinear differential equations can successfully be used to describe the hysteresis behavior of the MR damper. The focus of this paper is to develop an alternative method for modeling a damper in the form of centre average fuzzy interference system, where back propagation learning rules are used to adjust the weight of network. The inputs for the model are used from the experimental data. The resulting fuzzy interference system is satisfactorily represents the behavior of the MR fluid damper with reduced computational requirements. Use of the neuro-fuzzy model increases the feasibility of real time simulation.
Resumo:
Bicycle injuries, particularly those resulting from single bicycle crashes, are underreported in both police and hospital records. Data on cyclist characteristics and crash circumstances are also often lacking. As a result, the ability to develop comprehensive injury prevention policies is hampered. The aim of this study was to examine the incidence, severity, cyclist characteristics, and crash circumstances associated with cycling injuries in a sample of cyclists in Queensland, Australia. A cross-sectional study of Queensland cyclists was conducted in 2009. Respondents (n=2056) completed an online survey about their cycling experiences, including cycling injuries. Logistic regression modelling was used to examine the associations between demographic and cycling behaviour variables with experiencing cycling injuries in the past year, and, separately, with serious cycling injuries requiring a trip to a hospital. Twenty-seven percent of respondents (n=545) reported injuries, and 6% (n=114) reported serious injuries. In multivariable modelling, reporting an injury was more likely for respondents who had cycled <5 years, compared to ≥10 years (p<0.005); cycled for competition (p=0.01); or experienced harassment from motor vehicle occupants (p<0.001). There were no gender differences in injury incidence, and respondents who cycled for transport did not have an increased risk of injury. Reporting a serious injury was more likely for those whose injury involved other road users (p<0.03). Along with environmental and behavioural approaches for reducing collisions and near-collisions with motor vehicles, interventions that improve the design and maintenance of cycling infrastructure, increase cyclists’ skills, and encourage safe cycling behaviours and bicycle maintenance will also be important for reducing the overall incidence of cycling injuries.