57 resultados para blend
Resumo:
Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/squ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω−1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.
Resumo:
High efficiency organic photovoltaic cells discussed in literature are normally restricted to devices fabricated on glass substrates. This is a consequence of the extreme brittleness and inflexibility of the commonly used transparent conductive oxide electrode, indium tin oxide (ITO). This shortcoming of ITO along with other concerns such as increasing scarcity of indium, migration of indium to organic layer, etc. makes it imperative to move away from ITO. Here we demonstrate a highly flexible Ag electrode that possesses low sheet resistances even in ultra-thin layers. It retains its conductivity under severe bending stresses where ITO fails completely. A P3HT:PCBM blend organic solar cell fabricated on this highly flexible electrode gives an efficiency of 2.3%.
Resumo:
The interaction at the interface between a metal electrode and photoactive polymer is crucial for overall performance and stability of organic photovoltaics (OPVs). In this article, we report a comparative study of the stability of thin film Ag and indium tin oxide (ITO) as electrodes when used in conjunction with an interfacial PEDOT:PSS layer for P3HT:PCBM blend OPV devices. XPS measurements were taken for Ag and ITO/PEDOT:PSS layered samples with different exposure times to ambient conditions (∼25 °C, ∼50% relative humidity) to investigate the migration of Ag and In into the PEDOT:PSS layer. The change in efficiency of OPVs with a longer exposure time and degree of migration is explained by the analysis of XPS results. We propose the mechanism behind the interactions occurring at the interfaces. The efficiency of the ITO electrode OPVs continuously decreased to below 10% of the initial efficiency. However, the Ag devices displayed a slower degradation and maintained 50% of the initial efficiency for the same period of time.
Resumo:
This project originated from both investigation of the musicalisation of theatre and impact of gender upon contemporary physical comedy. Developed as a ‘music first’ proposition, the initial experiment was to blend music and theatre so they were indistinguishable. Musicalising theatre, and theatricalising music. This established a covert intermediality with the potential to work in theatre or music venues. An iterative cycle of writing, performance, and videography over two years in venues ranging from small cafes to Woodford Folk Festival resulted in a full-length performance premiering at Brisbane Powerhouse’s Queensland Cabaret Festival 2015. The soundtrack to the show was recorded as a full-length album at QUT’s Gasworks Studio and released in 2014. It’s become clear that male/female musical comedy acts are an extremely rare pairing. Certain preconceptions about gender and comedy complicate the field; indeed the comic tropes of the double act which the Warmwaters flow around and through. Brian Logan (2011) even poses that “the male-female dynamic militate[s] against comedy”. This performance-led research draws on Comedy Studies to examine three classic formulations of the comic duo as they are manifested at critical incidents in the Warmwaters’ show. These moments are examined in terms of comic functionality and gender, evaluating and potentially reformulating them, whilst working towards a better understanding of the relative scarcity of the male/female musical comedy duo. Prototypes have been performed in various venues, utilising performance as research: cycles in which discoveries made during unpredictable gigs in music venues are captured on video, transcribed, rewritten, then fed back into live performance.
Resumo:
Bombyx mori silk fibroin membranes provide a potential delivery vehicle for both cells and extracellular matrix (ECM) components into diseased or injured tissues. We have previously demonstrated the feasibility of growing retinal pigment epithelial cells (RPE) on fibroin membranes with the view to repairing the retina of patients afflicted with age-related macular degeneration (AMD). The goal of the present study was to investigate the feasibility of incorporating the ECM component elastin, in the form of human recombinant tropoelastin, into these same membranes. Two basic strategies were explored: (1) membranes prepared from blended solutions of fibroin and tropoelastin; and (2) layered constructs prepared from sequentially cast solutions of fibroin, tropoelastin, and fibroin. Optimal conditions for RPE attachment were achieved using a tropoelastin-fibroin blend ratio of 10 to 90 parts by weight. Retention of tropoelastin within the blend and layered constructs was confirmed by immunolabelling and Fourier-transform infrared spectroscopy (FTIR). In the layered constructs, the bulk of tropoelastin was apparently absorbed into the initially cast fibroin layer. Blend membranes displayed higher elastic modulus, percentage elongation, and tensile strength (p < 0.01) when compared to the layered constructs. RPE cell response to fibroin membranes was not affected by the presence of tropoelastin. These findings support the potential use of fibroin membranes for the co-delivery of RPE cells and tropoelastin.
Resumo:
Biodiesels produced from different feedstocks usually have wide variations in their fatty acid methyl ester (FAME) so that their physical properties and chemical composition are also different. The aim of this study is to investigate the effect of the physical properties and chemical composition of biodiesels on engine exhaust particle emissions. Alongside with neat diesel, four biodiesels with variations in carbon chain length and degree of unsaturation have been used at three blending ratios (B100, B50, B20) in a common rail engine. It is found that particle emission increased with the increase of carbon chain length. However, for similar carbon chain length, particle emissions from biodiesel having relatively high average unsaturation are found to be slightly less than that of low average unsaturation. Particle size is also found to be dependent on fuel type. The fuel or fuel mix responsible for higher particle mass (PM) and particle number (PN) emissions is also found responsible for larger particle median size. Particle emissions reduced consistently with fuel oxygen content regardless of the proportion of biodiesel in the blends, whereas it increased with fuel viscosity and surface tension only for higher diesel–biodiesel blend percentages (B100, B50). However, since fuel oxygen content increases with the decreasing carbon chain length, it is not clear which of these factors drives the lower particle emission. Overall, it is evident from the results presented here that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions.
Resumo:
Management of a pandemic engages multiple sites where previously settled or uncontroversial understandings may be transformed by global and domestic forces. This article examines the iconography of social distancing implicated in the discourses of ‘quarantine’ and ‘risk control’ in public health, and the tension between scientific and popular media readings of the contours of acceptable public health models for managing particular pandemics. The role of culture in shaping and reshaping borders at an operational level is explored as a basis for explaining the apparent paradoxes in the way historic and contemporary pandemics are actually managed, and the different ways particular pandemics are framed. The article argues that a rational-scientific approach to pandemic management is insufficient and that a more nuanced socio-political blend of science, culture and public perceptions offers a more substantial basis for public health policy.
Resumo:
This paper explores novel driving experiences that make use of gamification and augmented reality in the car. We discuss our design considerations, which are grounded in road safety psychology and video game design theory. We aim to address the tension between safe driving practices and player engagement. Specifically, we propose a holistic, iterative thinking process inspired by game design cognition and share our insights generated through the application of this process. We present preliminary game concepts that blend digital components with physical elements from the driving environment. We further highlight how this design process helped us to iteratively evolve these concepts towards being safer while maintaining fun. These insights and game design cognition itself will be useful to the AutomotiveUI community investigating similar novel driving experiences.
Resumo:
Physical and chemical properties of biofuels vary among various feedstocks and their subsequent conversions to fuels. The biofuels contain various amounts of oxygen, and this has a significant influence on exhaust emission. This oxygen content has been considered in order to investigate its effect on diesel engine exhaust emissions. The experiments have been conducted with a heavy duty diesel engine and various oxygenated fuels. It is found that the amount of oxygen in the fuel has a high level of influence on its exhaust emissions, and this provides agreement with diesel emissions results such as PN reduction. By increasing the amount of oxygen in the blend (by adding more biofuel), the particulate number (PN) is reduced and NOx increases gradually. However, the variation of PN and NOx are not similar for waste cooking biodiesel (WCBD) and butanol blend, even though their oxygen content are the same in the blends. This is due to the source of the biofuel and their internal chemistry.
Resumo:
Chris Denaro is a Brisbane-based animator whose work incorporates a blend of physical stop motion and digital motion graphics. This exhibition, Nocturne, uses animation to embody the genius loci of the former Peel Island Lazaret on the island of Teerk Roo Ra in Moreton Bay, Queensland. This project developed a form of animation that harnesses animation’s plasmatic quality to express an in-between state of being, and examines the capacity of animation to push and pull at the boundary lines between what can be apprehended as the ‘real’ and the ‘imaginary’. The Nocturne constructions cycle forever, with no beginning and no end,only a slightly familiar hypnotic rhythm to describe a continual process of adaptation and renewal. These artworks consider the animation loop as a mental state, rather than a sequence of events which illustrate a narrative. The loop can also be an anxious, compulsive place, divorced from the linear nature of reality, hypnotised in a trance like repetition. Nocturne investigates how conceptions of place are overlaid by aspects of history, memory and the imagination.
Resumo:
Both researchers and practitioners show increasing interest in exploring mixed reality games: games, where physical environments blend together with digital technologies. In this paper we have extended earlier work by bringing attention to the role of narrative in mixed reality games. For our case study we chose a mobile phone application Zombies Run!, which is designed to support actual running. This application contains a fictional story about a zombie apocalypse and provides runners with various quests (in the form of missions) to complete during their run. We investigated different aspects of participants' experience with the application and how it changed their running. Our findings show how the app changed running in three major ways. Firstly, it changed the way runs were organised. Secondly, it shook up established running routines. And lastly, it shaped the meanings associated with running.
Resumo:
This study investigates the morphology, microstructure and surface composition of Diesel engine exhaust particles. The state of agglomeration, the primary particle size and the fractal dimension of exhaust particles from petroleum Diesel (petrodiesel) and biodiesel blends from microalgae, cotton seed and waste cooking oil were investigated by means of high resolution transmission electron microscopy. With primary particle diameters between 12-19 nm, biodiesel blend primary particles are found to be smaller than petrodiesel ones (21±2 nm). Also it was found that soot agglomerates from biodiesels are more compact and spherical, as their fractal dimensions are higher, e.g. 2.2±0.1 for 50% algae biodiesel compared to 1.7±0.1 for petrodiesel. In addition, analysis of the chemical composition by means of x-ray photoelectron spectroscopy revealed an up to a factor of two increased oxygen content on the primary particle surface for biodiesel. The length, curvature and distance of graphene layers were measured showing a greater structural disorder for biodiesel with shorter fringes of higher tortuosity. This change in carbon chemistry may reflect the higher oxygen content of biofuels. Overall, it seems that the oxygen content in the fuels is the underlying reason for the observed morphological change in the resulting soot particles.