259 resultados para barometro altitudine navigazione indoor pressione atmosferica riconoscimento piani sensori
Resumo:
Motivated by growing considerations of the scale, severity and risks associated with human exposure to indoor particulate matter, this work reviewed existing literature to: (i) identify state-of-the-art experimental techniques used for personal exposure assessment; (ii) compare exposure levels reported for domestic/school settings in different countries (excluding exposure to environmental tobacco smoke and particulate matter from biomass cooking in developing countries); (iii) assess the contribution of outdoor background vs indoor sources to personal exposure; and (iv) examine scientific understanding of the risks posed by personal exposure to indoor aerosols. Limited studies assessing integrated daily residential exposure to just one particle size fraction, ultrafine particles, show that the contribution of indoor sources ranged from 19-76%. This indicates a strong dependence on resident activities, source events and site specificity, and highlights the importance of indoor sources for total personal exposure. Further, it was assessed that 10-30% of the total burden-of-disease from particulate matter exposure was due to indoor generated particles, signifying that indoor environments are likely to be a dominant environmental factor affecting human health. However, due to challenges associated with conducting epidemiological assessments, the role of indoor generated particles has not been fully acknowledged, and improved exposure/risk assessment methods are still needed, together with a serious focus on exposure control.
Resumo:
This study aimed to quantify the efficiency of deep bag and electrostatic filters, and assess the influence of ventilation systems using these filters on indoor fine (<2.5 µm) and ultrafine particle concentrations in commercial office buildings. Measurements and modelling were conducted for different indoor and outdoor particle source scenarios at three office buildings in Brisbane, Australia. Overall, the in-situ efficiency, measured for particles in size ranges 6 to 3000 nm, of the deep bag filters ranged from 26.3 to 46.9% for the three buildings, while the in-situ efficiency of the electrostatic filter in one building was 60.2%. The highest PN and PM2.5 concentrations in one of the office buildings (up to 131% and 31% higher than the other two buildings, respectively) were due to the proximity of the building’s HVAC air intakes to a nearby bus-only roadway, as well as its higher outdoor ventilation rate. The lowest PN and PM2.5 concentrations (up to 57% and 24% lower than the other two buildings, respectively) were measured in a building that utilised both outdoor and mixing air filters in its HVAC system. Indoor PN concentrations were strongly influenced by outdoor levels and were significantly higher during rush-hours (up to 41%) and nucleation events (up to 57%), compared to working-hours, for all three buildings. This is the first time that the influence of new particle formation on indoor particle concentrations has been identified and quantified. A dynamic model for indoor PN concentration, which performed adequately in this study also revealed that using mixing/outdoor air filters can significantly reduce indoor particle concentration in buildings where indoor air was strongly influenced by outdoor particle levels. This work provides a scientific basis for the selection and location of appropriate filters and outdoor air intakes, during the design of new, or upgrade of existing, building HVAC systems. The results also serve to provide a better understanding of indoor particle dynamics and behaviours under different ventilation and particle source scenarios, and highlight effective methods to reduce exposure to particles in commercial office buildings.
Resumo:
Endotoxins can significantly affect the air quality in school environments. However, there is currently no reliable method for the measurement of endotoxins and there is a lack of reference values for endotoxin concentrations to aid in the interpretation of measurement results in school settings. We benchmarked the “baseline” range of endotoxin concentration in indoor air, together with endotoxin load in floor dust, and evaluated the correlation between endotoxin levels in indoor air and settled dust, as well as the effects of temperature and humidity on these levels in subtropical school settings. Bayesian hierarchical modeling indicated that the concentration in indoor air and the load in floor dust were generally (<95th percentile) < 13 EU/m3 and < 24,570 EU/m2, respectively. Exceeding these levels would indicate abnormal sources of endotoxins in the school environment, and the need for further investigation. Metaregression indicated no relationship between endotoxin concentration and load, which points to the necessity for measuring endotoxin levels in both the air and settled dust. Temperature increases were associated with lower concentrations in indoor air and higher loads in floor dust. Higher levels of humidity may be associated with lower airborne endotoxin concentrations.
Resumo:
This research investigated airborne particle characteristics and their dynamics inside and around the envelope of mechanically ventilated office buildings, together with building thermal conditions and energy consumption. Based on these, a comprehensive model was developed to facilitate the optimisation of building heating, ventilation and air conditioning systems, in order to protect the health of their occupants and minimise the energy requirements of these buildings.
Resumo:
Dementia is an irreversible and incurable syndrome that leads to progressive impairment of cognitive functions and behavioural and psychological symptoms such as agitation, depression and psychosis. Appropriate environmental conditions can help delay its onset and progression, and indoor environmental (IE) factors have a major impact. However, there is no firm understanding of the full range of relevant IE factors and their impact levels. This paper describes a preliminary study to investigate the effects of IE on Hong Kong residential care homes (RCH) dementia residents. This involved six purposively selected focus groups, each comprising the main stakeholders of the dementia residents’ caregivers, RCH staff and/or registered nurses, and architects. Using the Critical Incident Technique, the main context and experiences of behavioural problems of dementia residents caused by IE were explored and the key causal RCH IE quality factors identified, together with the associated responses and stress levels involved. The findings indicate that the acoustic environment, lighting and thermal environment are the most important influencing factors. Many of the remedies provided by the focus groups are quite simple to carry out and are summarised in the form of recommendations to current RCHs providers and users. The knowledge acquired in this initial study will help enrich the knowledge of IE design for dementiaspecific residential facilities. It also provides some preliminary insights for healthcare policymakers and practitioners in the building design/facilities management and dementia-care sectors into the IE factors contributing to a more comfortable, healthy and sustainable RCH living environment in Hong Kong.
Resumo:
Polybrominated diphenyl ethers (PBDEs) are compounds that are used as flame retardants. Human exposure is suggested to be via food, dust and air. An assessment of PBDE exposure via indoor environments using samples of air, dust and surface wipes from eight sites in South East Queensland, Australia was conducted. For indoor air, ΣPBDEs ranged from 0.5 -179 pg/m3 for homes and 15 - 487 pg/m3 for offices. In dust, ΣPBDEs ranged from 87 - 733 ng/g dust and 583 - 3070 ng/g dust in homes and offices, respectively. PBDEs were detected on 9 out of 10 surfaces sampled and ranged from non-detectable to 5985 pg/cm2. Overall, the congener profiles for air and dust were dominated by BDE-209. This study demonstrated that PBDEs are ubiquitous in the indoor environments of selected buildings in South East Queensland and suggest the need for detailed assessment of PBDE concentrations using more sites to further investigate the factors influencing PBDE exposure in Australia.
Resumo:
This work investigated the impact of the HVAC filtration system and indoor particle sources on the relationship between indoor and outdoor airborne particle size and concentrations in an operating room. Filters with efficiency between 65% and 99.97% were used in the investigation and indoor and outdoor particle size and concentrations were measured. A balance mass model was used for the simulation of the impact of the surgical team, deposition rate, HVAC exhaust and air change rates on indoor particle concentration. The experimental results showed that high efficiency filters would not be expected to decrease the risk associated with indoor particles larger than approximately 1 µm in size because normal filters are relatively efficient for these large particles. A good fraction of outdoor particles were removed by deposition on the HVAC system surfaces and this deposition increased with particle size. For particles of 0.3-0.5 µm in diameter, particle reduction was about 23%, while for particles >10 µm the loss was about 78%. The modelling results showed that depending on the type of filter used, the surgical team generated between 93-99% of total particles, while the outdoor air contributed only 1-6%.
Resumo:
We introduce the MiniOrb platform, a combined sensor and interaction platform built to understand and encourage the gathering of data around personal indoor climate preferences in office environments. The platform consists of a sensor device, gathering localised environmental data and an attached tangible interaction and ambient display device. This device allows users to understand their local environment and record preferences with regards to their preferred level of office comfort. In addition to the tangible device we built a web-based mobile application that allowed users to record comfort preferences through a different interface. This paper describes the design goals and technical setup of the MiniOrb platform.
Resumo:
In this paper we describe the preliminary results of a field study which evaluated the use of MiniOrb, a system that employs ambient and tangible interaction mechanisms to allow inhabitants of office environments to report on subjectively perceived office comfort levels. The purpose of this study was to explore the role of ubiquitous computing in the individual control of indoor climate and specifically answer the question to what extent ambient and tangible interaction mechanisms are suited for the task of capturing individual comfort preferences in a non-obtrusive manner. We outline the preliminary results of an in-situ trial of the system.
Resumo:
Due to the popularity of security cameras in public places, it is of interest to design an intelligent system that can efficiently detect events automatically. This paper proposes a novel algorithm for multi-person event detection. To ensure greater than real-time performance, features are extracted directly from compressed MPEG video. A novel histogram-based feature descriptor that captures the angles between extracted particle trajectories is proposed, which allows us to capture motion patterns of multi-person events in the video. To alleviate the need for fine-grained annotation, we propose the use of Labelled Latent Dirichlet Allocation, a “weakly supervised” method that allows the use of coarse temporal annotations which are much simpler to obtain. This novel system is able to run at approximately ten times real-time, while preserving state-of-theart detection performance for multi-person events on a 100-hour real-world surveillance dataset (TRECVid SED).
Resumo:
This paper evaluates the performance of different text recognition techniques for a mobile robot in an indoor (university campus) environment. We compared four different methods: our own approach using existing text detection methods (Minimally Stable Extremal Regions detector and Stroke Width Transform) combined with a convolutional neural network, two modes of the open source program Tesseract, and the experimental mobile app Google Goggles. The results show that a convolutional neural network combined with the Stroke Width Transform gives the best performance in correctly matched text on images with single characters whereas Google Goggles gives the best performance on images with multiple words. The dataset used for this work is released as well.