247 resultados para back-tracking deployment (BTD)
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved (as opposed to radar). This paper describes the development and evaluation of a vision-based collision detection algorithm suitable for fixed-wing aerial robotics. The system was evaluated using highly realistic vision data of the moments leading up to a collision. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We make use of the enormous potential of graphic processing units to achieve processing rates of 30Hz (for images of size 1024-by- 768). Currently, integration in the final platform is under way.
Resumo:
This paper presents the implementation of a modified particle filter for vision-based simultaneous localization and mapping of an autonomous robot in a structured indoor environment. Through this method, artificial landmarks such as multi-coloured cylinders can be tracked with a camera mounted on the robot, and the position of the robot can be estimated at the same time. Experimental results in simulation and in real environments show that this approach has advantages over the extended Kalman filter with ambiguous data association and various levels of odometric noise.
Resumo:
Calibration of movement tracking systems is a difficult problem faced by both animals and robots. The ability to continuously calibrate changing systems is essential for animals as they grow or are injured, and highly desirable for robot control or mapping systems due to the possibility of component wear, modification, damage and their deployment on varied robotic platforms. In this paper we use inspiration from the animal head direction tracking system to implement a self-calibrating, neurally-based robot orientation tracking system. Using real robot data we demonstrate how the system can remove tracking drift and learn to consistently track rotation over a large range of velocities. The neural tracking system provides the first steps towards a fully neural SLAM system with improved practical applicability through selftuning and adaptation.
Resumo:
A new cold-formed steel beam, known as the LiteSteel Beam (LSB), has the potential to transform the low-rise building industry. The new beam is effectively a channel section with two rectangular hollow flanges and a slender web, and is manufactured using a simultaneous cold-forming and electric resistance welding process. Research into the flexural behaviour of single LSB members showed that the LSBs are susceptible to lateral distortional buckling effects and their moment capacities are significantly reduced for intermediate spans. Build-up LSB sections are expected to improve their flexural capacity and to enhance their applications. They are also likely to mitigate the detrimental effects of lateral distortional buckling observed with single LSB members of intermediate spans. However, the behaviour of build up beams is not well understood. Currently available design rules were found to be inadequate to predict the member moment capacities of back to back LSBs. Therefore a research project based on both experimental and numerical studies was undertaken to investigate the flexural behaviour of back to back LSBs with various longitudinal connection spacings under a uniform moment. New design rules were developed using the moment capacity data obtained using finite element analyses and experimental tests. This paper presents the details of the development of design rules for the back to back LSB sections.
Resumo:
This paper investigates a wireless sensor network deployment - monitoring water quality, e.g. salinity and the level of the underground water table - in a remote tropical area of northern Australia. Our goal is to collect real time water quality measurements together with the amount of water being pumped out in the area, and investigate the impacts of current irrigation practice on the environments, in particular underground water salination. This is a challenging task featuring wide geographic area coverage (mean transmission range between nodes is more than 800 meters), highly variable radio propagations, high end-to-end packet delivery rate requirements, and hostile deployment environments. We have designed, implemented and deployed a sensor network system, which has been collecting water quality and flow measurements, e.g., water flow rate and water flow ticks for over one month. The preliminary results show that sensor networks are a promising solution to deploying a sustainable irrigation system, e.g., maximizing the amount of water pumped out from an area with minimum impact on water quality.
Resumo:
This paper describes a novel experiment in which two very different methods of underwater robot localization are compared. The first method is based on a geometric approach in which a mobile node moves within a field of static nodes, and all nodes are capable of estimating the range to their neighbours acoustically. The second method uses visual odometry, from stereo cameras, by integrating scaled optical flow. The fundamental algorithmic principles of each localization technique is described. We also present experimental results comparing acoustic localization with GPS for surface operation, and a comparison of acoustic and visual methods for underwater operation.
Resumo:
This paper describes some new wireless sensor hardware developed for pastoral and environmental applications. From our early experiments with Mote hardware we were inspired to develop our devices with improved radio range, solar power capability, mechanical and electrical robustness, and with unique combinations of sensors. Here we describe the design and evolution of a small family of devices: radio/processor board, a soil moisture sensor interface, and a single board multi-sensor unit for animal tracking experiments.
Resumo:
This paper presents a technique for tracking road edges in a panoramic image sequence. The major contribution is that instead of unwarping the image to find parallel lines representing the road edges, we choose to warp the parallel groundplane lines into the image plane of the equiangular panospheric camera. Updating the parameters of the line thus involves searching a very small number of pixels in the panoramic image, requiring considerably less computation than unwarping. Results using real-world images, including shadows, intersections and curves, are presented.
Resumo:
Intelligent surveillance systems typically use a single visual spectrum modality for their input. These systems work well in controlled conditions, but often fail when lighting is poor, or environmental effects such as shadows, dust or smoke are present. Thermal spectrum imagery is not as susceptible to environmental effects, however thermal imaging sensors are more sensitive to noise and they are only gray scale, making distinguishing between objects difficult. Several approaches to combining the visual and thermal modalities have been proposed, however they are limited by assuming that both modalities are perfuming equally well. When one modality fails, existing approaches are unable to detect the drop in performance and disregard the under performing modality. In this paper, a novel middle fusion approach for combining visual and thermal spectrum images for object tracking is proposed. Motion and object detection is performed on each modality and the object detection results for each modality are fused base on the current performance of each modality. Modality performance is determined by comparing the number of objects tracked by the system with the number detected by each mode, with a small allowance made for objects entering and exiting the scene. The tracking performance of the proposed fusion scheme is compared with performance of the visual and thermal modes individually, and a baseline middle fusion scheme. Improvement in tracking performance using the proposed fusion approach is demonstrated. The proposed approach is also shown to be able to detect the failure of an individual modality and disregard its results, ensuring performance is not degraded in such situations.
Resumo:
This study assessed the reliability and validity of a palm-top-based electronic appetite rating system (EARS) in relation to the traditional paper and pen method. Twenty healthy subjects [10 male (M) and 10 female (F)] — mean age M=31 years (S.D.=8), F=27 years (S.D.=5); mean BMI M=24 (S.D.=2), F=21 (S.D.=5) — participated in a 4-day protocol. Measurements were made on days 1 and 4. Subjects were given paper and an EARS to log hourly subjective motivation to eat during waking hours. Food intake and meal times were fixed. Subjects were given a maintenance diet (comprising 40% fat, 47% carbohydrate and 13% protein by energy) calculated at 1.6×Resting Metabolic Rate (RMR), as three isoenergetic meals. Bland and Altman's test for bias between two measurement techniques found significant differences between EARS and paper and pen for two of eight responses (hunger and fullness). Regression analysis confirmed that there were no day, sex or order effects between ratings obtained using either technique. For 15 subjects, there was no significant difference between results, with a linear relationship between the two methods that explained most of the variance (r2 ranged from 62.6 to 98.6). The slope for all subjects was less than 1, which was partly explained by a tendency for bias at the extreme end of results on the EARS technique. These data suggest that the EARS is a useful and reliable technique for real-time data collection in appetite research but that it should not be used interchangeably with paper and pen techniques.
Resumo:
This present paper reviews the reliability and validity of visual analogue scales (VAS) in terms of (1) their ability to predict feeding behaviour, (2) their sensitivity to experimental manipulations, and (3) their reproducibility. VAS correlate with, but do not reliably predict, energy intake to the extent that they could be used as a proxy of energy intake. They do predict meal initiation in subjects eating their normal diets in their normal environment. Under laboratory conditions, subjectively rated motivation to eat using VAS is sensitive to experimental manipulations and has been found to be reproducible in relation to those experimental regimens. Other work has found them not to be reproducible in relation to repeated protocols. On balance, it would appear, in as much as it is possible to quantify, that VAS exhibit a good degree of within-subject reliability and validity in that they predict with reasonable certainty, meal initiation and amount eaten, and are sensitive to experimental manipulations. This reliability and validity appears more pronounced under the controlled (but more arti®cial) conditions of the laboratory where the signal : noise ratio in experiments appears to be elevated relative to real life. It appears that VAS are best used in within-subject, repeated-measures designs where the effect of different treatments can be compared under similar circumstances. They are best used in conjunction with other measures (e.g. feeding behaviour, changes in plasma metabolites) rather than as proxies for these variables. New hand-held electronic appetite rating systems (EARS) have been developed to increase reliability of data capture and decrease investigator workload. Recent studies have compared these with traditional pen and paper (P&P) VAS. The EARS have been found to be sensitive to experimental manipulations and reproducible relative to P&P. However, subjects appear to exhibit a signi®cantly more constrained use of the scale when using the EARS relative to the P&P. For this reason it is recommended that the two techniques are not used interchangeably
Resumo:
While close talking microphones give the best signal quality and produce the highest accuracy from current Automatic Speech Recognition (ASR) systems, the speech signal enhanced by microphone array has been shown to be an effective alternative in a noisy environment. The use of microphone arrays in contrast to close talking microphones alleviates the feeling of discomfort and distraction to the user. For this reason, microphone arrays are popular and have been used in a wide range of applications such as teleconferencing, hearing aids, speaker tracking, and as the front-end to speech recognition systems. With advances in sensor and sensor network technology, there is considerable potential for applications that employ ad-hoc networks of microphone-equipped devices collaboratively as a virtual microphone array. By allowing such devices to be distributed throughout the users’ environment, the microphone positions are no longer constrained to traditional fixed geometrical arrangements. This flexibility in the means of data acquisition allows different audio scenes to be captured to give a complete picture of the working environment. In such ad-hoc deployment of microphone sensors, however, the lack of information about the location of devices and active speakers poses technical challenges for array signal processing algorithms which must be addressed to allow deployment in real-world applications. While not an ad-hoc sensor network, conditions approaching this have in effect been imposed in recent National Institute of Standards and Technology (NIST) ASR evaluations on distant microphone recordings of meetings. The NIST evaluation data comes from multiple sites, each with different and often loosely specified distant microphone configurations. This research investigates how microphone array methods can be applied for ad-hoc microphone arrays. A particular focus is on devising methods that are robust to unknown microphone placements in order to improve the overall speech quality and recognition performance provided by the beamforming algorithms. In ad-hoc situations, microphone positions and likely source locations are not known and beamforming must be achieved blindly. There are two general approaches that can be employed to blindly estimate the steering vector for beamforming. The first is direct estimation without regard to the microphone and source locations. An alternative approach is instead to first determine the unknown microphone positions through array calibration methods and then to use the traditional geometrical formulation for the steering vector. Following these two major approaches investigated in this thesis, a novel clustered approach which includes clustering the microphones and selecting the clusters based on their proximity to the speaker is proposed. Novel experiments are conducted to demonstrate that the proposed method to automatically select clusters of microphones (ie, a subarray), closely located both to each other and to the desired speech source, may in fact provide a more robust speech enhancement and recognition than the full array could.
Resumo:
In public venues, crowd size is a key indicator of crowd safety and stability. In this paper we propose a crowd counting algorithm that uses tracking and local features to count the number of people in each group as represented by a foreground blob segment, so that the total crowd estimate is the sum of the group sizes. Tracking is employed to improve the robustness of the estimate, by analysing the history of each group, including splitting and merging events. A simplified ground truth annotation strategy results in an approach with minimal setup requirements that is highly accurate.
Resumo:
Scoping Project: Currently no national or structured learning framework available in Aus or NZ Current Project: Develop a national training program & capability framework for rail incident investigators - Establish the potential market demand - Define the curricula for a multi-level national training program - Explore training providers & delivery options
Resumo:
Islanded operation, protection, reclosing and arc extinguishing are some of the challenging issues related to the connection of converter interfaced distributed generators (DGs) into a distribution network. The isolation of upstream faults in grid connected mode and fault detection in islanded mode using overcurrent devices are difficult. In the event of an arc fault, all DGs must be disconnected in order to extinguish the arc. Otherwise, they will continue to feed the fault, thus sustaining the arc. However, the system reliability can be increased by maximising the DG connectivity to the system: therefore, the system protection scheme must ensure that only the faulted segment is removed from the feeder. This is true even in the case of a radial feeder as the DG can be connected at various points along the feeder. In this paper, a new relay scheme is proposed which, along with a novel current control strategy for converter interfaced DGs, can isolate permanent and temporary arc faults. The proposed protection and control scheme can even coordinate with reclosers. The results are validated through PSCAD/EMTDC simulation and MATLAB calculations.