140 resultados para Uncertainty in generation
Resumo:
This paper presents a new algorithm based on a Modified Particle Swarm Optimization (MPSO) to estimate the harmonic state variables in a distribution networks. The proposed algorithm performs the estimation for both amplitude and phase of each injection harmonic currents by minimizing the error between the measured values from Phasor Measurement Units (PMUs) and the values computed from the estimated parameters during the estimation process. The proposed algorithm can take into account the uncertainty of the harmonic pseudo measurement and the tolerance in the line impedances of the network as well as the uncertainty of the Distributed Generators (DGs) such as Wind Turbines (WTs). The main features of the proposed MPSO algorithm are usage of a primary and secondary PSO loop and applying the mutation function. The simulation results on 34-bus IEEE radial and a 70-bus realistic radial test networks are presented. The results demonstrate that the speed and the accuracy of the proposed Distribution Harmonic State Estimation (DHSE) algorithm are very excellent compared to the algorithms such as Weight Least Square (WLS), Genetic Algorithm (GA), original PSO, and Honey Bees Mating Optimization (HBMO).
Resumo:
This paper presents a new algorithm based on a Hybrid Particle Swarm Optimization (PSO) and Simulated Annealing (SA) called PSO-SA to estimate harmonic state variables in distribution networks. The proposed algorithm performs estimation for both amplitude and phase of each harmonic currents injection by minimizing the error between the measured values from Phasor Measurement Units (PMUs) and the values computed from the estimated parameters during the estimation process. The proposed algorithm can take into account the uncertainty of the harmonic pseudo measurement and the tolerance in the line impedances of the network as well as uncertainty of the Distributed Generators (DGs) such as Wind Turbines (WT). The main feature of proposed PSO-SA algorithm is to reach quickly around the global optimum by PSO with enabling a mutation function and then to find that optimum by SA searching algorithm. Simulation results on IEEE 34 bus radial and a realistic 70-bus radial test networks are presented to demonstrate the speed and accuracy of proposed Distribution Harmonic State Estimation (DHSE) algorithm is extremely effective and efficient in comparison with the conventional algorithms such as Weight Least Square (WLS), Genetic Algorithm (GA), original PSO and Honey Bees Mating Optimization (HBMO) algorithm.
Resumo:
Two sources of uncertainty in the X ray computed tomography imaging of polymer gel dosimeters are investigated in the paper.The first cause is a change in postirradiation density, which is proportional to the computed tomography signal and is associated with a volume change. The second cause of uncertainty is reconstruction noise.A simple technique that increases the residual signal to noise ratio by almost two orders of magnitude is examined.
Resumo:
Introduction Total scatter factor (or output factor) in megavoltage photon dosimetry is a measure of relative dose relating a certain field size to a reference field size. The use of solid phantoms has been well established for output factor measurements, however to date these phantoms have not been tested with small fields. In this work, we evaluate the water equivalency of a number of solid phantoms for small field output factor measurements using the EGSnrc Monte Carlo code. Methods The following small square field sizes were simulated using BEAMnrc: 5, 6, 7, 8, 10 and 30 mm. Each simulated phantom geometry was created in DOSXYZnrc and consisted of a silicon diode (of length and width 1.5 mm and depth 0.5 mm) submersed in the phantom at a depth of 5 g/cm2. The source-to-detector distance was 100 cm for all simulations. The dose was scored in a single voxel at the location of the diode. Interaction probabilities and radiation transport parameters for each material were created using custom PEGS4 files. Results A comparison of the resultant output factors in the solid phantoms, compared to the same factors in a water phantom are shown in Fig. 1. The statistical uncertainty in each point was less than or equal to 0.4 %. The results in Fig. 1 show that the density of the phantoms affected the output factor results, with higher density materials (such as PMMA) resulting in higher output factors. Additionally, it was also calculated that scaling the depth for equivalent path length had negligible effect on the output factor results at these field sizes. Discussion and conclusions Electron stopping power and photon mass energy absorption change minimally with small field size [1]. Also, it can be seen from Fig. 1 that the difference from water decreases with increasing field size. Therefore, the most likely cause for the observed discrepancies in output factors is differing electron disequilibrium as a function of phantom density. When measuring small field output factors in a solid phantom, it is important that the density is very close to that of water.
Resumo:
A bioeconomic model was developed to evaluate the potential performance of brown tiger prawn stock enhancement in Exmouth Gulf, Australia. This paper presents the framework for the bioeconomic model and risk assessment for all components of a stock enhancement operation, i.e. hatchery, grow-out, releasing, population dynamics, fishery, and monitoring, for a commercial scale enhancement of about 100 metric tonnes, a 25% increase in average annual catch in Exmouth Gulf. The model incorporates uncertainty in estimates of parameters by using a distribution for the parameter over a certain range, based on experiments, published data, or similar studies. Monte Carlo simulation was then used to quantify the effects of these uncertainties on the model-output and on the economic potential of a particular production target. The model incorporates density-dependent effects in the nursery grounds of brown tiger prawns. The results predict that a release of 21 million 1 g prawns would produce an estimated enhanced prawn catch of about 100 t. This scale of enhancement has a 66.5% chance of making a profit. The largest contributor to the overall uncertainty of the enhanced prawn catch was the post-release mortality, followed by the density-dependent mortality caused by released prawns. These two mortality rates are most difficult to estimate in practice and are much under-researched in stock enhancement.
Resumo:
Firstly, on behalf of the secretariat that has coordinated these meetings every two years since 1985, our thanks to the organising committee here at the University of Economics in Cracow, Poland, for hosting this conference. I was asked to offer comment on the research agenda. There are many famous names to refer to. Two Australian colleagues here today are Peter Dowling and Helen De Cieri, longtime stalwarts of the field of IHRM. I acknowledge their contributions over many years, along with Randy Schuler and Denise Welch, and Dennis Briscoe. Other names such as Rosalie Tung, Pawan Bhudwhar, Michael Morley, Paul Sparrow and Wayne Cascio are known to us all. Their books have become classics. One example is the 700 page benchmark 2012 work by Chris Brewster and Wolfgang Mayrhofer, Handbook of Research on Comparative Human Resource Management (Brewster & Mayrhofer, 2012). More recently, in a book published by Cambridge University press in 2014, Mustafa Özbilgin, Dimitria Groutsis and William Harvey offer students a very accessible overview of the basics in IHRM (Ozbilgin, Groutsis, & Harvey, 2014). As for a research agenda, there are excellent literature reviews to which I would refer you, such as those by people who over the years have been frequent participants at this conference (Tarique & Schuler, 2010), (Farndale, Scullion, & Sparrow, 2010), and (Scullion & Collings, 2011).
Resumo:
Majority of the current research on the mounting system has emphasised on the low/medium power engine, rare work has been reported for the high-speed and heavy-duty engine, the vibration characteristics of which exhibits significantly increased complexity and uncertainty. In this work, a general dynamics model was firstly established to describe the dynamic properties of a mounting system with various numbers of mounts. Then, this model was employed for the optimization of the mounting system. A modified Powell conjugate direction method was developed to improve the optimization efficiency. Basing on the optimization results obtained from the theoretical model, a mounting system was constructed for a V6 diesel engine. The experimental measurement of the vibration intensity of the mounting systems shows excellent agreement with the theoretical calculations, indicating the validity of the model. This dynamics model opens a new avenue in assessing and designing the mounting system for a high-speed and heavy-duty engine. On the other hand, the delineated dynamics model, and the optimization algorithm should find wide applications for other mounting systems, such as the power transmission system which usually has various uncertain mounts.
Learned stochastic mobility prediction for planning with control uncertainty on unstructured terrain
Resumo:
Motion planning for planetary rovers must consider control uncertainty in order to maintain the safety of the platform during navigation. Modelling such control uncertainty is difficult due to the complex interaction between the platform and its environment. In this paper, we propose a motion planning approach whereby the outcome of control actions is learned from experience and represented statistically using a Gaussian process regression model. This mobility prediction model is trained using sample executions of motion primitives on representative terrain, and predicts the future outcome of control actions on similar terrain. Using Gaussian process regression allows us to exploit its inherent measure of prediction uncertainty in planning. We integrate mobility prediction into a Markov decision process framework and use dynamic programming to construct a control policy for navigation to a goal region in a terrain map built using an on-board depth sensor. We consider both rigid terrain, consisting of uneven ground, small rocks, and non-traversable rocks, and also deformable terrain. We introduce two methods for training the mobility prediction model from either proprioceptive or exteroceptive observations, and report results from nearly 300 experimental trials using a planetary rover platform in a Mars-analogue environment. Our results validate the approach and demonstrate the value of planning under uncertainty for safe and reliable navigation.
Resumo:
This paper provides a preliminary summary of audit reports for Australian listed public companies for the period 2005 to 2013, focusing on auditor reporting in the most recent period 2011 to 2013. Prior research has shown that audit reports modified for uncertainty relating to the going concern assumption increased following the shock of the Global Financial Crisis (GFC) in late 2007. This occurred in Australia from 2008 where Xu et al. (2011) find that reports modified for going concern uncertainty increase from 12% in 2005 to 2007 to 18% in 2008 and 22% in 2009. Similar trends are observable for the United States as shown by an increase from 14% in 2003 to 21% in 2008 (Cheffers et al. 2010, Geiger et al. 2014). The aim of this report is to examine the frequency of the various types of audit reports issued in Australia during the period 2011 to 2013, with a focus on reports emphasizing significant uncertainty in regard to the going concern assumption.
Resumo:
Mobile robots and animals alike must effectively navigate their environments in order to achieve their goals. For animals goal-directed navigation facilitates finding food, seeking shelter or migration; similarly robots perform goal-directed navigation to find a charging station, get out of the rain or guide a person to a destination. This similarity in tasks extends to the environment as well; increasingly, mobile robots are operating in the same underwater, ground and aerial environments that animals do. Yet despite these similarities, goal-directed navigation research in robotics and biology has proceeded largely in parallel, linked only by a small amount of interdisciplinary research spanning both areas. Most state-of-the-art robotic navigation systems employ a range of sensors, world representations and navigation algorithms that seem far removed from what we know of how animals navigate; their navigation systems are shaped by key principles of navigation in ‘real-world’ environments including dealing with uncertainty in sensing, landmark observation and world modelling. By contrast, biomimetic animal navigation models produce plausible animal navigation behaviour in a range of laboratory experimental navigation paradigms, typically without addressing many of these robotic navigation principles. In this paper, we attempt to link robotics and biology by reviewing the current state of the art in conventional and biomimetic goal-directed navigation models, focusing on the key principles of goal-oriented robotic navigation and the extent to which these principles have been adapted by biomimetic navigation models and why.
Resumo:
BACKGROUND Measuring disease and injury burden in populations requires a composite metric that captures both premature mortality and the prevalence and severity of ill-health. The 1990 Global Burden of Disease study proposed disability-adjusted life years (DALYs) to measure disease burden. No comprehensive update of disease burden worldwide incorporating a systematic reassessment of disease and injury-specific epidemiology has been done since the 1990 study. We aimed to calculate disease burden worldwide and for 21 regions for 1990, 2005, and 2010 with methods to enable meaningful comparisons over time. METHODS We calculated DALYs as the sum of years of life lost (YLLs) and years lived with disability (YLDs). DALYs were calculated for 291 causes, 20 age groups, both sexes, and for 187 countries, and aggregated to regional and global estimates of disease burden for three points in time with strictly comparable definitions and methods. YLLs were calculated from age-sex-country-time-specific estimates of mortality by cause, with death by standardised lost life expectancy at each age. YLDs were calculated as prevalence of 1160 disabling sequelae, by age, sex, and cause, and weighted by new disability weights for each health state. Neither YLLs nor YLDs were age-weighted or discounted. Uncertainty around cause-specific DALYs was calculated incorporating uncertainty in levels of all-cause mortality, cause-specific mortality, prevalence, and disability weights. FINDINGS Global DALYs remained stable from 1990 (2·503 billion) to 2010 (2·490 billion). Crude DALYs per 1000 decreased by 23% (472 per 1000 to 361 per 1000). An important shift has occurred in DALY composition with the contribution of deaths and disability among children (younger than 5 years of age) declining from 41% of global DALYs in 1990 to 25% in 2010. YLLs typically account for about half of disease burden in more developed regions (high-income Asia Pacific, western Europe, high-income North America, and Australasia), rising to over 80% of DALYs in sub-Saharan Africa. In 1990, 47% of DALYs worldwide were from communicable, maternal, neonatal, and nutritional disorders, 43% from non-communicable diseases, and 10% from injuries. By 2010, this had shifted to 35%, 54%, and 11%, respectively. Ischaemic heart disease was the leading cause of DALYs worldwide in 2010 (up from fourth rank in 1990, increasing by 29%), followed by lower respiratory infections (top rank in 1990; 44% decline in DALYs), stroke (fifth in 1990; 19% increase), diarrhoeal diseases (second in 1990; 51% decrease), and HIV/AIDS (33rd in 1990; 351% increase). Major depressive disorder increased from 15th to 11th rank (37% increase) and road injury from 12th to 10th rank (34% increase). Substantial heterogeneity exists in rankings of leading causes of disease burden among regions. INTERPRETATION Global disease burden has continued to shift away from communicable to non-communicable diseases and from premature death to years lived with disability. In sub-Saharan Africa, however, many communicable, maternal, neonatal, and nutritional disorders remain the dominant causes of disease burden. The rising burden from mental and behavioural disorders, musculoskeletal disorders, and diabetes will impose new challenges on health systems. Regional heterogeneity highlights the importance of understanding local burden of disease and setting goals and targets for the post-2015 agenda taking such patterns into account. Because of improved definitions, methods, and data, these results for 1990 and 2010 supersede all previously published Global Burden of Disease results.
Resumo:
Objective Smoking prevalence among Vietnamese men is among the highest in the world. Our aim was to provide estimates of tobacco attributable mortality to support tobacco control policies. Method We used the Peto–Lopez method using lung cancer mortality to derive a Smoking Impact Ratio (SIR) as a marker of cumulative exposure to smoking. SIRs were applied to relative risks from the Cancer Prevention Study, Phase II. Prevalence-based and hybrid methods, using the SIR for cancers and chronic obstructive pulmonary disease and smoking prevalence for all other outcomes, were used in sensitivity analyses. Results When lung cancer was used to measure cumulative smoking exposure, 28% (95% uncertainty interval 24–31%) of all adult male deaths (> 35 years) in Vietnam in 2008 were attributable to smoking. Lower estimates resulted from prevalence-based methods [24% (95% uncertainty interval 21–26%)] with the hybrid method yielding intermediate estimates [26% (95% uncertainty interval 23–28%)]. Conclusion Despite uncertainty in these estimates of attributable mortality, tobacco smoking is already a major risk factor for death in Vietnamese men. Given the high current prevalence of smoking, this has important implications not only for preventing the uptake of tobacco but also for immediate action to adopt and enforce stronger tobacco control measures.
Resumo:
Modern power systems have become more complex due to the growth in load demand, the installation of Flexible AC Transmission Systems (FACTS) devices and the integration of new HVDC links into existing AC grids. On the other hand, the introduction of the deregulated and unbundled power market operational mechanism, together with present changes in generation sources including connections of large renewable energy generation with intermittent feature in nature, have further increased the complexity and uncertainty for power system operation and control. System operators and engineers have to confront a series of technical challenges from the operation of currently interconnected power systems. Among the many challenges, how to evaluate the steady state and dynamic behaviors of existing interconnected power systems effectively and accurately using more powerful computational analysis models and approaches becomes one of the key issues in power engineering. The traditional computing techniques have been widely used in various fields for power system analysis with varying degrees of success. The rapid development of computational intelligence, such as neural networks, fuzzy systems and evolutionary computation, provides tools and opportunities to solve the complex technical problems in power system planning, operation and control.
Resumo:
One of the main challenges facing online and offline path planners is the uncertainty in the magnitude and direction of the environmental energy because it is dynamic, changeable with time, and hard to forecast. This thesis develops an artificial intelligence for a mobile robot to learn from historical or forecasted data of environmental energy available in the area of interest which will help for a persistence monitoring under uncertainty using the developed algorithm.
Resumo:
This paper develops a dynamic model for cost-effective selection of sites for restoring biodiversity when habitat quality develops over time and is uncertain. A safety-first decision criterion is used for ensuring a minimum level of habitats, and this is formulated in a chance-constrained programming framework. The theoretical results show; (i) inclusion of quality growth reduces overall cost for achieving a future biodiversity target from relatively early establishment of habitats, but (ii) consideration of uncertainty in growth increases total cost and delays establishment, and (iii) cost-effective trading of habitat requires exchange rate between sites that varies over time. An empirical application to the red listed umbrella species - white-backed woodpecker - shows that the total cost of achieving habitat targets specified in the Swedish recovery plan is doubled if the target is to be achieved with high reliability, and that equilibrating price on a habitat trading market differs considerably between different quality growth combinations. © 2013 Elsevier GmbH.