281 resultados para Third Congregational Church (Springfield, Mass.)
Resumo:
Thermogravimetric analysis-mass spectrometry, X-ray diffraction and scanning electron microscopy (SEM) were used to characterize eight kaolinite samples from China. The results show that the thermal decomposition occurs in three main steps (a) desorption of water below 100 °C, (b) dehydration at about 225 °C, (c) well defined dehydroxylation at around 450 °C. It is also found that decarbonization took place at 710 °C due to the decomposition of calcite impurity in kaolin. The temperature of dehydroxylation of kaolinite is found to be influenced by the degree of disorder of the kaolinite structure and the gases evolved in the decomposition process can be various because of the different amount and kinds of impurities. It is evident by the mass spectra that the interlayer carbonate from impurity of calcite and organic carbon is released as CO2 around 225, 350 and 710 °C in the kaolinite samples.
Resumo:
Objective • Feasibility programme for on-board mass (OBM) monitoring of heavy vehicles (HVs) • Australian road authorities through Transport Certification Australia (TCA) • Accuracy of contemporary, commercially-available OBM units in Australia • Results need to be addressed/incorporated into specifications for Stage 2 of Intelligent Access Program (IAP) by Transport Certification Australia
Resumo:
The objective of this study was to investigate the factors that influence midlife women to make positive exercise and dietary changes. In late 2005 questionnaires were mailed to 866 women aged 51–66 years from rural and urban locations in Queensland, Australia and participating in Stage 2 of the Healthy Aging of Women Study. The questionnaires sought data on socio-demographics, body mass index (BMI), chronic health conditions, self-efficacy, exercise and dietary behavior change since age 40, and health-related quality of life. Five hundred and sixty four (69%) were completed and returned by early 2006. Data analysis comprised descriptive and bivariate statistics and structural equation modeling. The results showed that midlife is a significant time for women to make positive health behavior changes. Approximately one-third of the sample (34.6%) indicated that they had increased their exercise and around 60% had made an effort to eat more healthily since age 40. Modeling showed self-efficacy to be important in making both exercise and dietary changes. Although education appeared to influence self-efficacy in relation to exercise change, this was not the case for dietary change. The study has application for programs promoting healthy aging among women, and implies that those with low education, high BMI and poor mental health may need considerable support to improve their lifestyles.
Resumo:
A number of series of poly(acrylic acids) (PAA) of differing end-groups and molecular mass were used to study the inhibition of calcium oxalate crystallization. The effects of the end-group on crystal speciation and morphology were significant and dramatic, with hexyl-isobutyrate end groups giving preferential formation of calcium oxalate dihydrate (COD) rather than the more stable calcium oxalate monohydrate (COM), while both more hydrophobic end-groups and less-hydrophobic end groups led predominantly to formation of the least thermodynamically stable form of calcium oxalate, calcium oxalate trihydrate. Conversely, molecular mass had little impact on calcium oxalate speciation or crystal morphology. It is probable that the observed effects are related to the rate of desorption of the PAA moiety from the crystal (lite) surfaces and that the results point to a major role for end-group as well as molecular mass in controlling desorption rate.
Resumo:
Dwell times at stations and inter-station run times are the two major operational parameters to maintain train schedule in railway service. Current practices on dwell-time and run-time control are that they are only optimal with respect to certain nominal traffic conditions, but not necessarily the current service demand. The advantages of dwell-time and run-time control on trains are therefore not fully considered. The application of a dynamic programming approach, with the aid of an event-based model, to devise an optimal set of dwell times and run times for trains under given operational constraints over a regional level is presented. Since train operation is interactive and of multi-attributes, dwell-time and run-time coordination among trains is a multi-dimensional problem. The computational demand on devising trains' instructions, a prime concern in real-time applications, is excessively high. To properly reduce the computational demand in the provision of appropriate dwell times and run times for trains, a DC railway line is divided into a number of regions and each region is controlled by a dwell- time and run-time controller. The performance and feasibility of the controller in formulating the dwell-time and run-time solutions for real-time applications are demonstrated through simulations.
Resumo:
With daily commercial and social activity in cities, regulation of train service in mass rapid transit railways is necessary to maintain service and passenger flow. Dwell-time adjustment at stations is one commonly used approach to regulation of train service, but its control space is very limited. Coasting control is a viable means of meeting the specific run-time in an inter-station run. The current practice is to start coasting at a fixed distance from the departed station. Hence, it is only optimal with respect to a nominal operational condition of the train schedule, but not the current service demand. The advantage of coasting can only be fully secured when coasting points are determined in real-time. However, identifying the necessary starting point(s) for coasting under the constraints of current service conditions is no simple task as train movement is governed by a large number of factors. The feasibility and performance of classical and heuristic searching measures in locating coasting point(s) is studied with the aid of a single train simulator, according to specified inter-station run times.
Resumo:
On-board mass (OBM) monitoring devices on heavy vehicles (HVs) have been tested in a national programme jointly by Transport Certification Australia Limited and the National Transport Commission. The tests were for, amongst other parameters, accuracy and tamper-evidence. The latter by deliberately tampering with the signals from OBM primary transducers during the tests. The OBM feasibility team is analysing dynamic data recorded at the primary transducers of OBM systems to determine if it can be used to detect tamper events. Tamper-evidence of current OBM systems needs to be determined if jurisdictions are to have confidence in specifying OBM for HVs as part of regulatory schemes. An algorithm has been developed to detect tamper events. The results of its application are detailed here.
Resumo:
The Transport Certification Australia on-board mass feasibility project is testing various on-board mass devices in a range of heavy vehicles (HVs). Extensive field tests of on-board mass measurement systems for HVs have been conducted during 2008. These tests were of accuracy, robustness and tamper-evidence of heavy vehicle on-board mass telematics. All the systems tested showed accuracies within approximately +/- 500 kg of gross combination mass or approximately +/- 2% of the attendant weighbridge reading. Analysis of the dynamic data also showed encouraging results and has raised the possibility of use of such dynamic information in tamper evidence in two areas. This analysis was to determine if the use of averaged dynamic data could identify potential tampering or incorrect operating procedures as well as the possibility of dynamic measurements flagging a tamper event by the use of metrics including a tampering index (TIX). Technical and business options to detect tamper events will now be developed during implementation of regulatory OBM system application to Australian heavy vehicles (HVs).
Resumo:
This paper reports on the development of specifications for an on-board mass monitoring (OBM) application for regulatory requirements in Australia. An earlier paper reported on feasibility study and pilot testing program prior to the specification development [1]. Learnings from the pilot were used to refine this testing process and a full scale testing program was conducted from July to October 2008. The results from the full scale test and evidentiary implications are presented in this report. The draft specification for an evidentiary on-board mass monitoring application is currently under development.