74 resultados para Self-etching adhesive systems
Resumo:
Next-generation autonomous underwater vehicles (AUVs) will be required to robustly identify underwater targets for tasks such as inspection, localization, and docking. Given their often unstructured operating environments, vision offers enormous potential in underwater navigation over more traditional methods; however, reliable target segmentation often plagues these systems. This paper addresses robust vision-based target recognition by presenting a novel scale and rotationally invariant target design and recognition routine based on self-similar landmarks that enables robust target pose estimation with respect to a single camera. These algorithms are applied to an AUV with controllers developed for vision-based docking with the target. Experimental results show that the system performs exceptionally on limited processing power and demonstrates how the combined vision and controller system enables robust target identification and docking in a variety of operating conditions.
Resumo:
The nanostructured surface of biomaterials plays an important role in improving their in vitro cellular bioactivity as well as stimulating in vivo tissue regeneration. Inspired by the mussel’s adhesive versatility, which is thought to be due to the plaque–substrate interface being rich in 3,4-dihydroxy-L-phenylalamine (DOPA) and lysine amino acids, in this study we developed a self-assembly method to prepare a uniform calcium phosphate (Ca-P)/polydopamine composite nanolayer on the surface of b-tricalcium phosphate (b-TCP) bioceramics by soaking b-TCP bioceramics in Tris–dopamine solution. It was found that the addition of dopamine, reaction temperature and reaction time are three key factors inducing the formation of a uniform Ca-P/polydopamine composite nanolayer. The formation mechanism of a Ca-P/polydopamine composite nanolayer involved two important steps: (i) the addition of dopamine to Tris–HCl solution decreases the pH value and accelerates Ca and P ionic dissolution from the crystal boundaries of b-TCP ceramics; (ii) dopamine is polymerized to form self-assembled polydopamine film and, at the same time, nanosized Ca-P particles are mineralized with the assistance of polydopamine, in which the formation of polydopamine occurs simultaneously with Ca-P mineralization (formation of nanosized microparticles composed of calcium phosphate-based materials), and finally a self-assembled Ca-P/polydopamine composite nanolayer forms on the surface of the b-TCP ceramics. Furthermore, the formed self-assembled Ca-P/polydopamine composite nanolayer significantly enhances the surface roughness and hydrophilicity of b-TCP ceramics, and stimulates the attachment, proliferation, alkaline phosphate (ALP) activity and bone-related gene expression (ALP, OCN, COL1 and Runx2) of human bone marrow stromal cells. Our results suggest that the preparation of self-assembled Ca-P/polydopamine composite nanolayers is a viable method to modify the surface of biomaterials by significantly improving their surface physicochemical properties and cellular bioactivity for bone regeneration application.
Resumo:
The Control Theory has provided a useful theoretical foundation for Information Systems development outsourcing (ISD-outsourcing) to examine the co-ordination between the client and the vendor. Recent research identified two control mechanisms: structural (structure of the control mode) and process (the process through which the control mode is enacted). Yet, the Control Theory research to-date does not describe the ways in which the two control mechanisms can be combined to ensure project success. Grounded in case study data of eight ISD-outsourcing projects, we derive three ‘control configurations’; i) aligned, ii) negotiated, and 3) self-managed, which describe the combinative patterns of structural and process control mechanisms within and across control modes.
Resumo:
In nature, the interactions between agents in a complex system (fish schools; colonies of ants) are governed by information that is locally created. Each agent self-organizes (adjusts) its behaviour, not through a central command centre, but based on variables that emerge from the interactions with other system agents in the neighbourhood. Self-organization has been proposed as a mechanism to explain the tendencies for individual performers to interact with each other in field-invasion sports teams, displaying functional co-adaptive behaviours, without the need for central control. The relevance of self-organization as a mechanism that explains pattern-forming dynamics within attacker-defender interactions in field-invasion sports has been sustained in the literature. Nonetheless, other levels of interpersonal coordination, such as intra-team interactions, still raise important questions, particularly with reference to the role of leadership or match strategies that have been prescribed in advance by a coach. The existence of key properties of complex systems, such as system degeneracy, nonlinearity or contextual dependency, suggests that self-organization is a functional mechanism to explain the emergence of interpersonal coordination tendencies within intra-team interactions. In this opinion article we propose how leadership may act as a key constraint on the emergent, self-organizational tendencies of performers in field-invasion sports.
Resumo:
To minimise the number of load sheddings in a microgrid (MG) during autonomous operation, islanded neighbour MGs can be interconnected if they are on a self-healing network and an extra generation capacity is available in the distributed energy resources (DER) of one of the MGs. In this way, the total load in the system of interconnected MGs can be shared by all the DERs within those MGs. However, for this purpose, carefully designed self-healing and supply restoration control algorithm, protection systems and communication infrastructure are required at the network and MG levels. In this study, first, a hierarchical control structure is discussed for interconnecting the neighbour autonomous MGs where the introduced primary control level is the main focus of this study. Through the developed primary control level, this study demonstrates how the parallel DERs in the system of multiple interconnected autonomous MGs can properly share the load of the system. This controller is designed such that the converter-interfaced DERs operate in a voltage-controlled mode following a decentralised power sharing algorithm based on droop control. DER converters are controlled based on a per-phase technique instead of a conventional direct-quadratic transformation technique. In addition, linear quadratic regulator-based state feedback controllers, which are more stable than conventional proportional integrator controllers, are utilised to prevent instability and weak dynamic performances of the DERs when autonomous MGs are interconnected. The efficacy of the primary control level of the DERs in the system of multiple interconnected autonomous MGs is validated through the PSCAD/EMTDC simulations considering detailed dynamic models of DERs and converters.
Resumo:
In order to minimize the number of load shedding in a Microgrid during autonomous operation, islanded neighbour microgrids can be interconnected if they are on a self-healing network and an extra generation capacity is available in Distributed Energy Resources (DER) in one of the microgrids. In this way, the total load in the system of interconnected microgrids can be shared by all the DERs within these microgrids. However, for this purpose, carefully designed self-healing and supply restoration control algorithm, protection systems and communication infrastructure are required at the network and microgrid levels. In this chapter, first a hierarchical control structure is discussed for interconnecting the neighbour autonomous microgrids where the introduced primary control level is the main focus. Through the developed primary control level, it demonstrates how the parallel DERs in the system of multiple interconnected autonomous microgrids can properly share the load in the system. This controller is designed such that the converter-interfaced DERs operate in a voltage-controlled mode following a decentralized power sharing algorithm based on droop control. The switching in the converters is controlled using a linear quadratic regulator based state feedback which is more stable than conventional proportional integrator controllers and this prevents instability among parallel DERs when two microgrids are interconnected. The efficacy of the primary control level of DERs in the system of multiple interconnected autonomous microgrids is validated through simulations considering detailed dynamic models of DERs and converters.
Resumo:
A simple and effective method of controlling the growth of vertically aligned carbon nanotube arrays in a lowerature plasma is presented. Ni catalyst was pretreated by plasma immersion ion implantation prior to the nanotube growth by plasma-enhanced chemical vapor deposition. Both the size distribution and the areal density of the catalyst nanoparticles decrease due to the ion-surface interactions. Consequently, the resulting size distribution of the vertically aligned carbon nanotubes is reduced to 50 ∼ 100 nm and the areal density is lowered (by a factor of ten) to 10 8 cm -2, which is significantly different from the very-high-density carbon nanotube forests commonly produced by thermal chemical vapor deposition. The efficiency of this pretreatment is compared with the existing techniques such as neutral gas annealing and plasma etching. These results are highly relevant to the development of the next-generation nanoelectronic and optoelectronic devices that require effective control of the density of nanotube arrays.
Resumo:
The results of the combined experimental and numerical study suggest that nonequilibrium plasma-driven self-organization leads to better size and positional uniformity of nickel nanodot arrays on a Si(100) surface compared with neutral gas-based processes under similar conditions. This phenomenon is explained by introducing the absorption zone patterns, whose areas relative to the small nanodot sizes become larger when the surface is charged. Our results suggest that strongly nonequilibrium and higher-complexity plasma systems can be used to improve ordering and size uniformity in nanodot arrays of various materials, a common and seemingly irresolvable problem in self-organized systems of small nanoparticles. © 2008 American Institute of Physics.
Resumo:
The formation of arrays of vertically aligned nanotips on a moderately heated (up to 500 degrees C) Si surface exposed to reactive low-temperature radio frequency (RF) Ar+H(2) plasmas is studied. It is demonstrated that the nanotip surface density, aspect ratio and height dispersion strongly depend on the substrate temperature, discharge power, and gas composition. It is shown that nanotips with aspect ratios from 2.0 to 4.0 can only be produced at a higher RF power density (41.7 mW cm(-3)) and a hydrogen content of about 60%, and that larger aspect ratios can be achieved at substrate temperatures of about 300 degrees C. The use of higher (up to 500 degrees C) temperatures leads to a decrease of the aspect ratio but promotes the formation of more uniform arrays with the height dispersion decreasing to 1.5. At lower (approximately 20 mW cm(-3)) RF power density, only semispherical nanodots can be produced. Based on these experimental results, a nanotip formation scenario is proposed suggesting that sputtering, etching, hydrogen termination, and atom/radical re-deposition are the main concurrent mechanisms for the nanostructure formation. Numerical calculations of the ion flux distribution and hydrogen termination profiles can be used to predict the nanotip shapes and are in a good agreement with the experimental results. This approach can be applied to describe the kinetics of low-temperature formation of other nanoscale materials by plasma treatment.
Resumo:
Precise control of composition and internal structure is essential for a variety of novel technological applications which require highly tailored binary quantum dots (QDs) with predictable optoelectronic and mechanical properties. The delicate balancing act between incoming flux and substrate temperature required for the growth of compositionally graded (Si1-xC x; x varies throughout the internal structure), core-multishell (discrete shells of Si and C or combinations thereof) and selected composition (x set) QDs on low-temperature plasma/ion-flux-exposed Si(100) surfaces is investigated via a hybrid numerical simulation. Incident Si and C ions lead to localized substrate heating and a reduction in surface diffusion activation energy. It is shown that by incorporating ions in the influx, a steady-state composition is reached more quickly (for selected composition QDs) and the composition gradient of a Si1-xCx QD may be fine tuned; additionally (with other deposition conditions remaining the same), larger QDs are obtained on average. It is suggested that ionizing a portion of the influx is another way to control the average size of the QDs, and ultimately, their internal structure. Advantages that can be gained by utilizing plasma/ion-related controls to facilitate the growth of highly tailored, compositionally controlled quantum dots are discussed as well.
Resumo:
This work presents the details of the numerical model used in simulation of self-organization of nano-islands on solid surfaces in plasma-assisted assembly of quantum dot structures. The model includes the near-substrate non-neutral layer (plasma sheath) and a nanostructured solid deposition surface and accounts for the incoming flux of and energy of ions from the plasma, surface temperature-controlled adatom migration about the surface, adatom collisions with other adatoms and nano-islands, adatom inflow to the growing nano-islands from the plasma and from the two-dimensional vapour on the surface, and particle evaporation to the ambient space and the two-dimensional vapour. The differences in surface concentrations of adatoms in different areas within the quantum dot pattern significantly affect the self-organization of the nano-islands. The model allows one to formulate the conditions when certain islands grow, and certain ones shrink or even dissolve and relate them to the process control parameters. Surface coverage by selforganized quantum dots obtained from numerical simulation appears to be in reasonable agreement with the available experimental results.
Resumo:
The control of the generation and assembly of the electronegative plasma-grown particles is discussed. Due to the large number of elementary processes of particle creation and loss, electronegative complex plasmas should be treated as open systems where the stationary states are sustained by various particle creation and loss processes in the plasma bulk, on the walls, and on the dust grain surfaces. To be physically self-consistent, ionization, diffusion, electron attachment, recombination, dust charge variation, and dissipation due to electron and ion elastic collisions with neutrals and fine particles, as well as charging collisions with the dust, must be accounted for.
Resumo:
Self-assembly of carbon nanotip (CNTP) structures on Ni-based catalyst in chemically active inductively coupled plasmas of CH 4 + H 2 + Ar gas mixtures is reported. By varying the process conditions, it appears possible to control the shape, size, and density of CNTPs, content of the nanocrystalline phase in the films, as well as to achieve excellent crystallinity, graphitization, uniformity and vertical alignment of the resulting nanostructures at substrate temperatures 300-500°C and low gas pressures (below 13.2 Pa). This study provides a simple and efficient plasma-enhanced chemical vapor deposition (PECVD) technique for the fabrication of vertically aligned CNTP arrays for electron field emitters.
Resumo:
Self-organization and dynamic processes of nano/micron-sized solid particles grown in low-temperature chemically active plasmas as well as the associated physico-chemical processes are reviewed. Three specific reactive plasma chemistries, namely, of silane (SiH4), acetylene (C 2H2), and octafluorocyclobutane (c-C4F 8) RF plasma discharges for plasma enhanced chemical vapor deposition of amorphous hydrogenated silicon, hydrogenated and fluorinated carbon films, are considered. It is shown that the particle growth mechanisms and specific self-organization processes in the complex reactive plasma systems are related to the chemical organization and size of the nanoparticles. Correlation between the nanoparticle origin and self-organization in the ionized gas phase and improved thin film properties is reported. Self-organization and dynamic phenomena in relevant reactive plasma environments are studied for equivalent model systems comprising inert buffer gas and mono-dispersed organic particulate powders. Growth kinetics and dynamic properties of the plasma-assembled nanoparticles can be critical for the process quality in microelectronics as well as a number of other industrial applications including production of fine metal or ceramic powders, nanoparticle-unit thin film deposition, nanostructuring of substrates, nucleating agents in polymer and plastics synthesis, drug delivery systems, inorganic additives for sunscreens and UV-absorbers, and several others. Several unique properties of the chemically active plasma-nanoparticle systems are discussed as well.
Resumo:
This research has built on the growing interest in the prosumer in the workplace – prosumers are those users with high technological skills who both produce and consume their own technology solutions. Prosumers are leaders in their industrial or professional fields and who expect to obtain significant benefit from innovating. The literature reveals that commercially attractive products tend to be developed by prosumers who are at the leading edge of important marketplace trends and therefore this group is increasingly important. This study surveyed prosumers across a variety of occupations and workplaces and explored the motivators and personality traits of the prosumer.