90 resultados para Segmentation, Targeting and Positioning
Resumo:
Today’s evolving networks are experiencing a large number of different attacks ranging from system break-ins, infection from automatic attack tools such as worms, viruses, trojan horses and denial of service (DoS). One important aspect of such attacks is that they are often indiscriminate and target Internet addresses without regard to whether they are bona fide allocated or not. Due to the absence of any advertised host services the traffic observed on unused IP addresses is by definition unsolicited and likely to be either opportunistic or malicious. The analysis of large repositories of such traffic can be used to extract useful information about both ongoing and new attack patterns and unearth unusual attack behaviors. However, such an analysis is difficult due to the size and nature of the collected traffic on unused address spaces. In this dissertation, we present a network traffic analysis technique which uses traffic collected from unused address spaces and relies on the statistical properties of the collected traffic, in order to accurately and quickly detect new and ongoing network anomalies. Detection of network anomalies is based on the concept that an anomalous activity usually transforms the network parameters in such a way that their statistical properties no longer remain constant, resulting in abrupt changes. In this dissertation, we use sequential analysis techniques to identify changes in the behavior of network traffic targeting unused address spaces to unveil both ongoing and new attack patterns. Specifically, we have developed a dynamic sliding window based non-parametric cumulative sum change detection techniques for identification of changes in network traffic. Furthermore we have introduced dynamic thresholds to detect changes in network traffic behavior and also detect when a particular change has ended. Experimental results are presented that demonstrate the operational effectiveness and efficiency of the proposed approach, using both synthetically generated datasets and real network traces collected from a dedicated block of unused IP addresses.
Resumo:
This paper presents an overview of technical solutions for regional area precise GNSS positioning services such as in Queensland. The research focuses on the technical and business issues that currently constrain GPS-based local area Real Time Kinematic (RTK) precise positioning services so as to operate in future across larger regional areas, and therefore support services in agriculture, mining, utilities, surveying, construction, and others. The paper first outlines an overall technical framework that has been proposed to transition the current RTK services to future larger scale coverage. The framework enables mixed use of different reference GNSS receiver types, dual- or triple-frequency, single or multiple systems, to provide RTK correction services to users equipped with any type of GNSS receivers. Next, data processing algorithms appropriate for triple-frequency GNSS signals are reviewed and some key performance benefits of using triple carrier signals for reliable RTK positioning over long distances are demonstrated. A server-based RTK software platform is being developed to allow for user positioning computations at server nodes instead of on the user's device. An optimal deployment scheme for reference stations across a larger-scale network has been suggested, given restrictions such as inter-station distances, candidates for reference locations, and operational modes. For instance, inter-station distances between triple-frequency receivers can be extended to 150km, which doubles the distance between dual-frequency receivers in the existing RTK network designs.
Resumo:
The use of social networking sites (SNS) by online citizens to share photos, update friends, play games and to connect with the world has exploded, with SNS and blogs now eclipsing email traffic (eMarketer 2009). Just one popular application on one SNS, (Farmville on Facebook) acquired more than 63 million users since its launch in June 2009 (Marketing 2009. The major global social networks are Facebook, Twitter, YouTube and MySpace, with Facebook claiming that it passed 350 million users in November (Marketing 2009). As usage increases and competition intensifies, the major sites must strategically position themselves to develop a competitive advantage in order to maintain or grow their share of the pie. So how do the major SNS position their brands, and do users perceive significant differences among the big players? This presentation answers these questions by reporting the results of an empirical study of SNS usage by Australian adults. Like other brands, aligning brand positioning strategies with user knowledge and perceptions of SNS is an important ingredient to achieving success (Keller 1993). Furthermore we compare the types of value for three different SNS to identify the relationships between the value derived by users and the stated positioning of the site.
Resumo:
Segmentation of novel or dynamic objects in a scene, often referred to as background sub- traction or foreground segmentation, is critical for robust high level computer vision applica- tions such as object tracking, object classifca- tion and recognition. However, automatic real- time segmentation for robotics still poses chal- lenges including global illumination changes, shadows, inter-re ections, colour similarity of foreground to background, and cluttered back- grounds. This paper introduces depth cues provided by structure from motion (SFM) for interactive segmentation to alleviate some of these challenges. In this paper, two prevailing interactive segmentation algorithms are com- pared; Lazysnapping [Li et al., 2004] and Grab- cut [Rother et al., 2004], both based on graph- cut optimisation [Boykov and Jolly, 2001]. The algorithms are extended to include depth cues rather than colour only as in the original pa- pers. Results show interactive segmentation based on colour and depth cues enhances the performance of segmentation with a lower er- ror with respect to ground truth.
Resumo:
In this paper we present a real-time foreground–background segmentation algorithm that exploits the following observation (very often satisfied by a static camera positioned high in its environment). If a blob moves on a pixel p that had not changed its colour significantly for a few frames, then p was probably part of the background when its colour was static. With this information we are able to update differentially pixels believed to be background. This work is relevant to autonomous minirobots, as they often navigate in buildings where smart surveillance cameras could communicate wirelessly with them. A by-product of the proposed system is a mask of the image regions which are demonstrably background. Statistically significant tests show that the proposed method has a better precision and recall rates than the state of the art foreground/background segmentation algorithm of the OpenCV computer vision library.
Resumo:
A system to segment and recognize Australian 4-digit postcodes from address labels on parcels is described. Images of address labels are preprocessed and adaptively thresholded to reduce noise. Projections are used to segment the line and then the characters comprising the postcode. Individual digits are recognized using bispectral features extracted from their parallel beam projections. These features are insensitive to translation, scaling and rotation, and robust to noise. Results on scanned images are presented. The system is currently being improved and implemented to work on-line.
Resumo:
How can Australian library and information science (LIS) education produce, in a sustainable manner, the diverse supply of graduates with the appropriate attributes to develop and maintain high quality professional practice in the rapidly changing 21st century? This report presents the key findings of a project that has examined this question through research into future directions for LIS education in Australia. Titled Re-conceptualising and re-positioning Australian library and information science education for the twenty-first century, the purpose of the project was to establish a consolidated and holistic picture of the Australian LIS profession, and identify how its future education and training can be mediated in a cohesive and sustainable manner. The project was undertaken with a team of 12 university and vocational LIS educators from 11 institutions around Australia between November 2009 and December 2010. Collectively, these eleven institutions represented the broad spectrum and diversity of LIS education in Australia, and enabled the project to examine education for the information profession in a holistic and synergistic manner. Participating institutions in the project included Queensland University of Technology (Project Leader), Charles Sturt University, Curtin University of Technology, Edith Cowan University, Monash University, RMIT University, University of Canberra, University of South Australia, University of Tasmania, University of Technology Sydney and Victoria University. The inception and need for the project was motivated by a range of factors. From a broad perspective several of these factors relate to concerns raised at national and international levels regarding problems with education for LIS. In addition, the motivation and need for the project also related to some unique challenges that LIS education faces in the Australian tertiary education landscape. Over recent years a range of responses to explore the various issues confronting LIS education in Australia have emerged at local and national levels however this project represented the first significant investment of funding for national research in this area. In this way, the inception of the project offered a unique opportunity and powerful mechanism through which to bring together key stakeholders and inspire discourse concerning future education for the profession. Therefore as the first national project of its kind, its intent has been to provide foundation research that will inform and guide future directions for LIS education and training in Australia. The primary objective of the project was to develop a Framework for the Education of the Information Professions in Australia. The purpose of this framework was to provide evidence based strategic recommendations that would guide Australia’s future education for the information professions. Recognising the three major and equal players in the education process the project was framed around three areas of consideration: LIS students, the LIS workforce and LIS educators. Each area of consideration aligned to a research substudy in the project. The three research substudies were titled Student Considerations, Workforce Planning Considerations and Tertiary Education Considerations. The Students substudy provided a profile of LIS students and an analysis of their choices, experiences and expectations in regard to LIS education and their graduate destinations. The Workforce substudy provided an overview and analysis of the nature of the current LIS workforce, including a focus on employer expectations and employment opportunities and comment on the core and elective skill, knowledge and attitudes of current and future LIS professionals. Finally the Tertiary Education substudy provided a profile of LIS educators and an analysis of their characteristics and experiences including the key issues and challenges. In addition it also explored current national and international trends and priorities impacting on LIS education. The project utilised a Community Based Participatory Research (CBPR) approach. This approach involves all members of the community in all aspects of the project. It recognised the unique strengths and perspectives that community members bring to the process. For this project ‘community’ comprised of all individuals who have a role in, or a vested interest in, LIS education and included LIS educators, professionals, employers, students and professional associations. Individuals from these sub-groups were invited to participate in a range of aspects of the project from design through to implementation and evaluation. A range of research methodologies were used to consider the many different perspectives of LIS education, including employers and recruiters, professional associations, students, graduates and LIS teaching staff. Data collection involved a mixed method approach of questionnaires, focus groups, semi-structured interviews and environmental scans. An array of approaches was selected to ensure that broadest possible access to different facets of the information profession would be achieved. The main findings and observations from each substudy have highlighted a range of challenges for LIS education that need to be addressed. These findings and observations have grounded the development of the Framework for the Education of the Information Professions in Australia. The framework presents eleven recommendations to progress the national approach to LIS education and guide Australia’s future education for the information professions. The framework will be used by the LIS profession, most notably its educators, as strategic directions for the future of LIS education in Australia. Framework for the Education of the Information Professions in Australia: Recommendation 1: It is recommended that a broader and more inclusive vocabulary be adopted that both recognises and celebrates the expanding landscape of the field, for example ‘information profession’, ‘information sector’, ‘information discipline’ and ‘information education’. Recommendation 2: It is recommended that a self-directed body composed of information educators be established to promote, support and lead excellence in teaching and research within the information discipline. Recommendation 3: It is recommended that Australia’s information discipline continue to develop excellence in information research that will raise the discipline’s profile and contribute to its prominence within the national and international arena. Recommendation 4: It is recommended that further research examining the nature and context of Australia’s information education programs be undertaken to ensure a sustainable and relevant future for the discipline. Recommendation 5: It is recommended that further research examining the pathways and qualifications available for entry into the Australian information sector be undertaken to ensure relevance, attractiveness, accessibility and transparency. Recommendation 6: It is recommended that strategies are developed and implemented to ensure the sustainability of the workforce of information educators. Recommendation 7: It is recommended that a national approach to promoting and marketing the information profession and thereby attracting more students to the field is developed. Recommendation 8: It is recommended that Australia’s information discipline continues to support a culture of quality teaching and learning, especially given the need to accommodate a focus on the broader information landscape and more flexible delivery options. Recommendation 9: It is recommended that strategies are developed that will support and encourage collaboration between information education within the higher education and VET sectors. Recommendation 10: It is recommended that strategies and forums are developed that will support the information sector working together to conceptualise and articulate their professional identity and educational needs. Recommendation 11: It is recommended that a research agenda be established that will identify and prioritise areas in which further development or work is needed to continue advancing information education in Australia. The key findings from this project confirm that a number of pressing issues are confronting LIS education in Australia. Left unaddressed these issues will have significant implications for the future of LIS education as well as the broader LIS profession. Consequently creating a sustainable and cohesive future can only be realised through cooperation and collaboration among all stakeholders including those with the capacity to enact radical change in university and vocational institutions. Indeed the impending adoption and implementation of the project’s recommendations will fundamentally determine whether Australian LIS education is assured both for the present day and into the future.
Resumo:
This paper outlines the Exceptional Teachers for Disadvantaged Schools (ETDS) project which began in June 2010 with the aim of developing and documenting an Australian university-based teacher education program specifically focusing on the preparation of high quality teachers for the disadvantaged school sector. ETDS constitutes a novel model of teacher education targeting disadvantaged schooling in that the selection of participating pre-service teachers has been based on their proven academic performance over the first 2 years of their 4-year Bachelor of Education degree. ETDS has established a modified curriculum that better supports the on-campus training of this cohort while also targeting the role of field experience within partner disadvantaged school settings. This paper offers a rationale for the model, unpacks its various phases and provides a justification of the model’s selection criteria based on high academic achievement.
Resumo:
The future vehicle navigation for safety applications requires seamless positioning at the accuracy of sub-meter or better. However, standalone Global Positioning System (GPS) or Differential GPS (DGPS) suffer from solution outages while being used in restricted areas such as high-rise urban areas and tunnels due to the blockages of satellite signals. Smoothed DGPS can provide sub-meter positioning accuracy, but not the seamless requirement. A disadvantage of the traditional navigation aids such as Dead Reckoning and Inertial Measurement Unit onboard vehicles are either not accurate enough due to error accumulation or too expensive to be acceptable by the mass market vehicle users. One of the alternative technologies is to use the wireless infrastructure installed in roadside to locate vehicles in regions where the Global Navigation Satellite Systems (GNSS) signals are not available (for example: inside tunnels, urban canyons and large indoor car parks). The examples of roadside infrastructure which can be potentially used for positioning purposes could include Wireless Local Area Network (WLAN)/Wireless Personal Area Network (WPAN) based positioning systems, Ultra-wide band (UWB) based positioning systems, Dedicated Short Range Communication (DSRC) devices, Locata’s positioning technology, and accurate road surface height information over selected road segments such as tunnels. This research reviews and compares the possible wireless technologies that could possibly be installed along roadside for positioning purposes. Models and algorithms of integrating different positioning technologies are also presented. Various simulation schemes are designed to examine the performance benefits of united GNSS and roadside infrastructure for vehicle positioning. The results from these experimental studies have shown a number of useful findings. It is clear that in the open road environment where sufficient satellite signals can be obtained, the roadside wireless measurements contribute very little to the improvement of positioning accuracy at the sub-meter level, especially in the dual constellation cases. In the restricted outdoor environments where only a few GPS satellites, such as those with 45 elevations, can be received, the roadside distance measurements can help improve both positioning accuracy and availability to the sub-meter level. When the vehicle is travelling in tunnels with known heights of tunnel surfaces and roadside distance measurements, the sub-meter horizontal positioning accuracy is also achievable. Overall, simulation results have demonstrated that roadside infrastructure indeed has the potential to provide sub-meter vehicle position solutions for certain road safety applications if the properly deployed roadside measurements are obtainable.
Resumo:
In order to support intelligent transportation system (ITS) road safety applications such as collision avoidance, lane departure warnings and lane keeping, Global Navigation Satellite Systems (GNSS) based vehicle positioning system has to provide lane-level (0.5 to 1 m) or even in-lane-level (0.1 to 0.3 m) accurate and reliable positioning information to vehicle users. However, current vehicle navigation systems equipped with a single frequency GPS receiver can only provide road-level accuracy at 5-10 meters. The positioning accuracy can be improved to sub-meter or higher with the augmented GNSS techniques such as Real Time Kinematic (RTK) and Precise Point Positioning (PPP) which have been traditionally used in land surveying and or in slowly moving environment. In these techniques, GNSS corrections data generated from a local or regional or global network of GNSS ground stations are broadcast to the users via various communication data links, mostly 3G cellular networks and communication satellites. This research aimed to investigate the precise positioning system performances when operating in the high mobility environments. This involves evaluation of the performances of both RTK and PPP techniques using: i) the state-of-art dual frequency GPS receiver; and ii) low-cost single frequency GNSS receiver. Additionally, this research evaluates the effectiveness of several operational strategies in reducing the load on data communication networks due to correction data transmission, which may be problematic for the future wide-area ITS services deployment. These strategies include the use of different data transmission protocols, different correction data format standards, and correction data transmission at the less-frequent interval. A series of field experiments were designed and conducted for each research task. Firstly, the performances of RTK and PPP techniques were evaluated in both static and kinematic (highway with speed exceed 80km) experiments. RTK solutions achieved the RMS precision of 0.09 to 0.2 meter accuracy in static and 0.2 to 0.3 meter in kinematic tests, while PPP reported 0.5 to 1.5 meters in static and 1 to 1.8 meter in kinematic tests by using the RTKlib software. These RMS precision values could be further improved if the better RTK and PPP algorithms are adopted. The tests results also showed that RTK may be more suitable in the lane-level accuracy vehicle positioning. The professional grade (dual frequency) and mass-market grade (single frequency) GNSS receivers were tested for their performance using RTK in static and kinematic modes. The analysis has shown that mass-market grade receivers provide the good solution continuity, although the overall positioning accuracy is worse than the professional grade receivers. In an attempt to reduce the load on data communication network, we firstly evaluate the use of different correction data format standards, namely RTCM version 2.x and RTCM version 3.0 format. A 24 hours transmission test was conducted to compare the network throughput. The results have shown that 66% of network throughput reduction can be achieved by using the newer RTCM version 3.0, comparing to the older RTCM version 2.x format. Secondly, experiments were conducted to examine the use of two data transmission protocols, TCP and UDP, for correction data transmission through the Telstra 3G cellular network. The performance of each transmission method was analysed in terms of packet transmission latency, packet dropout, packet throughput, packet retransmission rate etc. The overall network throughput and latency of UDP data transmission are 76.5% and 83.6% of TCP data transmission, while the overall accuracy of positioning solutions remains in the same level. Additionally, due to the nature of UDP transmission, it is also found that 0.17% of UDP packets were lost during the kinematic tests, but this loss doesn't lead to significant reduction of the quality of positioning results. The experimental results from the static and the kinematic field tests have also shown that the mobile network communication may be blocked for a couple of seconds, but the positioning solutions can be kept at the required accuracy level by setting of the Age of Differential. Finally, we investigate the effects of using less-frequent correction data (transmitted at 1, 5, 10, 15, 20, 30 and 60 seconds interval) on the precise positioning system. As the time interval increasing, the percentage of ambiguity fixed solutions gradually decreases, while the positioning error increases from 0.1 to 0.5 meter. The results showed the position accuracy could still be kept at the in-lane-level (0.1 to 0.3 m) when using up to 20 seconds interval correction data transmission.