503 resultados para Seedling growth.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Providing water infrastructure in times of accelerating climate change presents interesting new problems. Expanding demands must be met or managed in contexts of increasingly constrained sources of supply, raising ethical questions of equity and participation. Loss of agricultural land and natural habitats, the coastal impacts of desalination plants and concerns over re-use of waste water must be weighed with demand management issues of water rationing, pricing mechanisms and inducing behaviour change. This case study examines how these factors impact on infrastructure planning in South East Queensland, Australia: a region with one of the developed world’s most rapidly growing populations, which has recently experienced the most severe drought in its recorded history. Proposals to match forecast demands and potential supplies for water over a 20 year period are reviewed by applying ethical principles to evaluate practical plans to meet the water needs of the region’s activities and settlements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pore architecture of scaffolds is known to play a critical role in tissue engineering as it provides the vital framework for seeded cells to organize into a functioning tissue. In this report we have investigated the effects of different concentrations of silk fibroin protein on three-dimensional (3D) scaffold pore microstructure. Four pore size ranges of silk fibroin scaffolds were made by the freeze drying technique, with the pore sizes ranging from 50 to 300 lm. The pore sizes of the scaffolds decreased as the concentration of fibroin protein increased. Human bone marrow mesenchymal stromal cells (BMSC) transfected with the BMP7 gene were cultured in these scaffolds. A cell viability colorimetric assay, alkaline phosphatase assay and reverse transcription-polymerase chain reaction were performed to analyze the effect of pore size on cell growth, the secretion of extracellular matrix (ECM) and osteogenic differentiation. Cell migration in 3D scaffolds was confirmed by confocal microscopy. Calvarial defects in SCID mice were used to determine the bone forming ability of the silk fibroin scaffolds incorporating BMSC expressing BMP7. The results showed that BMSC expressing BMP7 preferred a pore size between 100 and 300 lm in silk fibroin protein fabricated scaffolds, with better cell proliferation and ECM production. Furthermore, in vivo transplantation of the silk fibroin scaffolds combined with BMSC expressing BMP7 induced new bone formation. This study has shown that an optimized pore architecture of silk fibroin scaffolds can modulate the bioactivity of BMP7-transfected BMSC in bone formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study, to elucidate the role of des(1-3)IGF-I in the maturation of IGF-I,used two strategies. The first was to detect the presence of enzymes in tissues, which would act on IGF-I to produce des(1-3)IGF-I, and the second was to detect the potential products of such enzymic activity, namely Gly-Pro-Glu(GPE), Gly-Pro(GP) and des(l- 3)IGF-I. No neutral tripeptidyl peptidase (TPP II), which would release the tripeptide GPE from IGF-I, was detected in brain, urine nor in red or white blood cells. The TPPlike activity which was detected, was attributed to a combined action of a dipeptidyl peptidase (DPP N) and an aminopeptidase (AP A). A true TPP II was, however, detected in platelets. Two purified TPP II enzymes were investigated but they did not release GPE from IGF-I under a variety of conditions. Consequently, TPP II seemed unlikely to participate in the formation of des(1-3)IGF-I. In contrast, an acidic tripeptidyl peptidase activity (TPP I) was detected in brain and colostrum, the former with a pH optimum of 4.5 and the latter 3.8. It seems likely that such an enzyme would participate in the formation of des( 1-3 )IGF-I in these tissues in vitro, ie. that des(1-3)IGF-I may have been produced as an artifact in the isolation of IGF-I from brain and colostrum in acidic conditions. This contrasts with suggestions of an in vivo role for des(1-3)IGF-I, as reported by others. The activity of a dipeptidyl peptidase N (DPP N) from urine, which should release the dipeptide GP from IGF-I, was assessed under a variety of conditions and with a variety of additives and potential enzyme stimulants, but there was no release of GP. The DPP N also exhibited a transferase activity with synthetic substrates in the presence of dipeptides, at lower concentrations than previously reported for other acceptors or other proteolytic enzymes. In addition, a low concentration of a product,possibly the tetrapeptide Gly-Pro-Gly-Leu, was detected with the action of the enzyme on IGF-I in the presence of the dipeptide Gly-Leu. As part of attempts to detect tissue production of des(1-3)IGF-I, a monoclonal antibody (MAb ), directed towards the GPE- end ofiGF-I was produced by immunisation with a 10-mer covalently attached to a carrier protein. By the use of indirect ELISA and inhibitor studies, the MAb was shown to selectively recognise peptides with anNterminal GPE- sequence, and applied to the indirect detection of des(1-3)IGF-I. The concentration of GPE in brain, measured by mass spectrometry ( MS), was low, and the concentration of total IGF-I (measured by ELISA with a commercial polyclonal antibody [P Ab]) was 40 times higher at 50 nmol/kg. This also, was not consistent with the action of a tripeptidyl peptidase in brain that converted all IGF-I to des(1-3)IGF-I plus GPE. Contrasting ELISA results, using the MAb prepared in this study, suggest an even higher concentration of intact IGF-I of 150 nmollkg. This would argue against the presence of any des( 1-3 )IGF-I in brain, but in turn, this indicates either the presence of other substances containing a GPE amino-terminus or other cross reacting epitope. Although the results of the specificity studies reported in Chapter 5 would make this latter possibility seem unlikely, it cannot be completely excluded. No GP was detected in brain by MS. No GPE was detected in colostrum by capillary electrophoresis (CE) but the interference from extraneous substances reduced the detectability of GPE by CE and this approach would require further, prior, purification and concentration steps. A molecule, with a migration time equal to that of the peptide GP, was detected in colostrum by CE, but the concentration (~ 10 11mo/L) was much higher than the IGF-I concentration measured by radio-immunoassay using a PAb (80 nmol/L) or using a Mab (300-400 nmolL). A DPP IV enzyme was detected in colostrum and this could account for the GP, derived from substrates other than IGF-1. Based on the differential results of the two antibody assays, there was no indication of the presence of des(1-3)IGF-I in brain or colostrum. In the absence of any enzyme activity directed towards the amino terminus of IGF-I and the absence any potential products, IGF-I, therefore, does not appear to "mature" via des(1-3)IGF-I in the brain, nor in the neutral colostrum. In spite of these results which indicate the absence of an enzymic attack on IGF-I and the absence of the expected products in tissues, the possibility that the conversion of IGF-I may occur in neutral conditions in limited amounts, cannot be ruled out. It remains possible that in the extracellular environment of the membrane, a complex interaction of IGF-I, binding protein, aminopeptidase(s) and receptor, produces des(1- 3)IGF-I as a transient product which is bound to the receptor and internalised.