125 resultados para SUSCEPTIBILITY
Resumo:
The glutathione S-transferase (GST) family of enzymes function in the body to detoxify carcinogenic compounds. Several genes that code for these enzymes are polymorphic, with particular genotypes previously shown to confer an increased cancer risk. In this study, we investigated the role of three GST genes (GSTM1, GSTP1 and GSTT1) in the development of sporadic breast cancer. Genotypes were determined in 129 breast cancer affected and 129 age and sex matched control individuals. Results did not support an involvement of these specific GST gene polymorphisms, either independently or in combination, in susceptibility to sporadic breast cancer in the tested Australian Caucasian population.
Resumo:
Solar keratoses (SKs) are induced by exposure to UV radiation and are capable of undergoing transformation to squamous cell carcinoma (SCC).1 The two main factors influencing the occurrence of SK are the sensitivity of the skin to sunlight and the total duration of solar exposure. These factors are responsible for the high incidence of SK in Australia. Although the influence of genetic factors is not defined, there is evidence that the gene encoding the enzyme, glutathione S-transferase, may be implicated in cancer predisposition and therefore SK. Glutathione S-transferase Mu-1 (GSTM1) is an isoenzyme involved in the detoxification of carcinogens. The GSTM1 protein is completely absent in approximately 50% of white persons. This absence is caused by a homozygous gene deletion on chromosome 1p resulting in a null genotype.2 Katoh3 showed that the frequency of the GSTM1 null genotype was significantly higher in 85 patients with urothelial cancer (61.2%; p < 0.05), suggesting that the null genotype may increase cancer susceptibility. This finding was supported by Lafuente et al.4 who found evidence that persons who lack the GSTM1 gene have approximately twice the chance of experiencing malignant melanoma. Further research in the United Kingdom found that patients with two or more skin tumors of different types, basal cell carcinoma (BCC) and SCC, had a significantly higher frequency of GSTM1 null genotypes than controls (71%; p = 0.033). However the GSTM1 genotype in patients with only SCC was not excessive in this population.5 Persons residing in northern Australia have the highest incidence of nonmelanoma skin cancer (SCC and BCC) in the world6 and receive far greater solar exposure than persons residing in the United Kingdom. It is possible that the GSTM1 null genotype may affect susceptibility to SK, which may act as SCC precursors, in Australians exposed to these high levels of solar radiation.
Resumo:
The ubiquitous chemical messenger molecule nitric oxide (NO) has been implicated in a diverse range of biological activities including neurotransmission, smooth muscle motility and mediation of nociception. Endogenous synthesis of NO by the neuronal isoform of the nitric oxide synthase gene family has an essential role within the central and peripheral nervous systems in addition to the autonomic innervation of cerebral blood vessels. To investigate the potential role of NO and more specifically the neuronal nitric oxide synthase (nNOS) gene in migraine susceptibility, we investigated two microsatellite repeat variants residing within the 5′ and 3′ regions of the nNOS gene. Population genomic evaluation of the two nNOS repeat variants indicated significant linkage disequilibrium between the two loci. Z-DNA conformational sequence structures within the 5′ region of the nNOS gene have the potential to enhance or repress gene promoter activity. We suggest that genetic analysis of this 5′ repeat variant is the more functional variant expressing gene wide information that could affect endogenous NO synthesis and potentially result in diseased states. However, no association with migraine (with or without aura) was seen in our extensive case-control cohort (n = 579 affected with matched controls), when both the 5′ and 3′ genetic variants were investigated.
Resumo:
Migraine is classified by the World Health Organization (WHO) as being one of the top 20 most debilitating diseases. According to the neurovascular hypothesis, neuroinflammation may promote the activation and sensitisation of meningeal nociceptors, inducing the persistent throbbing headache characterized in migraine. The tumor necrosis factor (TNF) gene cluster, made up of TNFα, lymphotoxin α (LTA), and lymphotoxin β (LTB), has been implicated to influence the intensity and duration of local inflammation. It is thought that sterile inflammation mediated by LTA, LTB, and TNFα contributes to threshold brain excitability, propagation of neuronal hyperexcitability and thus initiation and maintenance of a migraine attack. Previous studies have investigated variants within the TNF gene cluster region in relation to migraine susceptibility, with largely conflicting results. The aim of this study was to expand on previous research and utilize a large case-control cohort and range of variants within the TNF gene cluster to investigate the role of the TNF gene cluster in migraine. Nine single nucleotide polymorphisms (SNPs) were selected for investigation as follows: rs1800683, rs2229094, rs2009658, rs2071590, rs2239704, rs909253, rs1800630, rs1800629, and rs3093664. No significant association with migraine susceptibility was found for any of the SNPs tested, with further testing according to migraine subtype and gender also showing no association for disease risk. Haplotype analysis showed that none of the tested haplotypes were significantly associated with migraine.
Resumo:
Migraine is a debilitating neurological disorder characterized by recurrent attacks of severe headache. The disorder is highly prevalent, affecting approximately 12% of Caucasian populations. It is well known that migraine has a strong genetic component, although the type and number of genes involved is not yet clear. However, the calcium channel gene, CACNA1A, on chromosome 19 contains mutations responsible for familial hemiplegic migraine, a rare and severe subtype of migraine. There is also evidence to suggest that serotonin- and dopamine-related genes may be involved in the pathogenesis of migraine. This study employed a linkage and association approach to investigate neurotransmitter-related migraine candidate genes. Polymorphisms within the dopamine beta-hydroxylase (DBH) gene, serotonin transporter gene (SERT), and dopamine receptor gene (DRD2) were tested in 177 unrelated Caucasian migraineurs and 182 control individuals. In addition, an independent sample of 82 families affected with migraine was examined. Unrelated case-control association analysis of a DBH intragenic dinucleotide polymorphism indicated altered allelic distribution between migraine and control groups (L2=16.53, P=0.019). Furthermore, the transmission/disequilibrium test, which was implemented on the family data, also indicated distortion of allele transmission for the same DBH marker (L2=4.44, P=0.035). Together, these results provide evidence for allelic association of the DBH gene with typical migraine susceptibility (Fisher's combined P value=0.006) and indicate that further research into the role of the DBH gene in the etiology of migraine is warranted.
Resumo:
Background: Genome-wide association studies (GWAS) have identified more than 100 genetic loci for various cancers. However, only one is for endometrial cancer. Methods: We conducted a three-stage GWAS including 8,492 endometrial cancer cases and 16,596 controls. After analyzing 585,963 single-nucleotide polymorphisms (SNP) in 832 cases and 2,682 controls (stage I) from the Shanghai Endometrial Cancer Genetics Study, we selected the top 106 SNPs for in silico replication among 1,265 cases and 5,190 controls from the Australian/British Endometrial Cancer GWAS (stage II). Nine SNPs showed results consistent in direction with stage I with P < 0.1. These nine SNPs were investigated among 459 cases and 558 controls (stage IIIa) and six SNPs showed a direction of association consistent with stages I and II. These six SNPs, plus two additional SNPs selected on the basis of linkage disequilibrium and P values in stage II, were investigated among 5,936 cases and 8,166 controls from an additional 11 studies (stage IIIb). Results: SNP rs1202524, near the CAPN9 gene on chromosome 1q42.2, showed a consistent association with endometrial cancer risk across all three stages, with ORs of 1.09 [95% confidence interval (CI), 1.03–1.16] for the A/G genotype and 1.17 (95% CI, 1.05–1.30) for the G/G genotype (P = 1.6 × 10−4 in combined analyses of all samples). The association was stronger when limited to the endometrioid subtype, with ORs (95% CI) of 1.11 (1.04–1.18) and 1.21 (1.08–1.35), respectively (P = 2.4 × 10−5). Conclusions: Chromosome 1q42.2 may host an endometrial cancer susceptibility locus. Impact: This study identified a potential genetic locus for endometrial cancer risk
Resumo:
Susceptibility to complex traits, by definition, involves aetiological polymorphisms at multiple genetic loci combined with variable contributions by environmental factors. However, the approaches taken to identifying genetic loci implicated in susceptibility to complex traits frequently overlooks the compounding contribution of multiple loci in favour of highlighting a single gene solely responsible for predisposition. It is only in a small minority of cases that this has resulted in clear disease heritability associated with polymorphisms in a single gene. More often, this approach has led to an accumulation of single-gene associations with minor contributions to disease susceptibility. As the genomic era advances and genome-wide screens become higher in resolution and throughput, the need for simultaneous consideration of multiple loci is becoming more important. With special reference to non-Hodgkin’s lymphoma (NHL), this chapter will overview the current progress made in elucidating genetic polymorphisms associated with disease susceptibility. We also present novel data from a high-resolution single nucleotide polymorphism (SNP) microarray screen for susceptibility loci that are involved in NHL. Using an ‘informed approach’, the findings are highlighted within the context of cellular pathways, and provide insight and new ideas for methods of analysis for genome-wide screens for susceptibility.
Resumo:
Background Migraine is a debilitating neurological disorder affecting approximately 12% of the Caucasian population. There are two main sub-types of migraine, migraine without aura (MO) and migraine with aura (MA). Migraine exhibits varied phenotypic expression with sufferers experiencing a range of neurological and other symptoms. It is likely that multiple susceptibility genes play a role in this varied phenotypic expression, thus investigation of genotype-phenotype relationships may provide valuable insights into the role of susceptibility genes in this disorder. Methods This study investigated the links between migraine susceptibility genes, methylenetetrahydrofolate reductase (MTHFR) and angiotensin converting enzyme (ACE), and clinical manifestation through statistical analyses. Results The result showed that for the MTHFR genotypes, there was a statistically significant correlation with the TT homozygous genotype and visual disturbances, unilateral head pain and physical activity discomforts. It was also found that bilateral head pain was associated with the male gender. Conclusion From these study results, it is plausible to state that MTHFR genotypes affect the phenotypic expression of migraine disease manifestation.
Resumo:
Human leucocyte antigen (HLA)-DRB1*1501 and other class II alleles influence susceptibility to multiple sclerosis (MS), but their contribution if any to the clinical course of MS remains uncertain. Here, we have investigated DRB1 alleles in a large sample of 1230 Australian MS cases, with some enrichment for subjects with primary progressive (PPMS) disease (n = 246) and 1210 healthy controls. Using logistic regression, we found that DRB1*1501 was strongly associated with risk (P = 7 x 10-45), as expected, and after adjusting for DRB1*1501, a predisposing effect was also observed for DRB1*03 (P = 5 x 10-7). Individuals homozygous for either DRB1*15 or DRB1*03 were considerably more at risk of MS than heterozygotes and non-carriers. Both the DRB1*04 and the DRB1*01/DRB1*15 genotype combination, respectively, protected against PPMS in comparison to subjects with relapsing disease. Together, these data provide further evidence of heterogeneity at the DRB1 locus and confirm the importance of HLA variants in the phenotypic expression of MS.
Resumo:
Genetic variability in the strength and precision of fear memory is hypothesised to contribute to the etiology of anxiety disorders, including post-traumatic stress disorder. We generated fear-susceptible (F-S) or fear-resistant (F-R) phenotypes from an F8 advanced intercross line (AIL) of C57BL/6J and DBA/2J inbred mice by selective breeding. We identified specific traits underlying individual variability in Pavlovian conditioned fear learning and memory. Offspring of selected lines differed in the acquisition of conditioned fear. Furthermore, F-S mice showed greater cued fear memory and generalised fear in response to a novel context than F-R mice. F-S mice showed greater basal corticosterone levels and hypothalamic corticotrophin-releasing hormone (CRH) mRNA levels than F-R mice, consistent with higher hypothalamic-pituitary-adrenal (HPA) axis drive. Hypothalamic mineralocorticoid receptor and CRH receptor 1 mRNA levels were decreased in F-S mice as compared with F-R mice. Manganese-enhanced magnetic resonance imaging (MEMRI) was used to investigate basal levels of brain activity. MEMRI identified a pattern of increased brain activity in F-S mice that was driven primarily by the hippocampus and amygdala, indicating excessive limbic circuit activity in F-S mice as compared with F-R mice. Thus, selection pressure applied to the AIL population leads to the accumulation of heritable trait-relevant characteristics within each line, whereas non-behaviorally relevant traits remain distributed. Selected lines therefore minimise false-positive associations between behavioral phenotypes and physiology. We demonstrate that intrinsic differences in HPA axis function and limbic excitability contribute to phenotypic differences in the acquisition and consolidation of associative fear memory. Identification of system-wide traits predisposing to variability in fear memory may help in the direction of more targeted and efficacious treatments for fear-related pathology. Through short-term selection in a B6D2 advanced intercross line we created mouse populations divergent for the retention of Pavlovian fear memory. Trait distinctions in HPA-axis drive and fear network circuitry could be made between naïve animals in the two lines. These data demonstrate underlying physiological and neurological differences between Fear-Susceptible and Fear-Resistant animals in a natural population. F-S and F-R mice may therefore be relevant to a spectrum of disorders including depression, anxiety disorders and PTSD for which altered fear processing occurs.
Resumo:
Background Chlamydia trachomatis infection results in reproductive damage in some women. The process and factors involved in this immunopathology are not well understood. This study aimed to investigate the role of primary human cellular responses to chlamydial stress response proteases and chlamydial infection to further identify the immune processes involved in serious disease sequelae. Results Laboratory cell cultures and primary human reproductive epithelial cultures produced IL-6 in response to chlamydial stress response proteases (CtHtrA and CtTsp), UV inactivated Chlamydia, and live Chlamydia. The magnitude of the IL-6 response varied considerably (up to 1000 pg ml-1) across different primary human reproductive cultures. Thus different levels of IL-6 production by reproductive epithelia may be a determinant in disease outcome. Interestingly, co-culture models with either THP-1 cells or autologous primary human PBMC generally resulted in increased levels of IL-6, except in the case of live Chlamydia where the level of IL-6 was decreased compared to the epithelial cell culture only, suggesting this pathway may be able to be modulated by live Chlamydia. PBMC responses to the stress response proteases (CtTsp and CtHtrA) did not significantly vary for the different participant cohorts. Therefore, these proteases may possess conserved innate PAMPs. MAP kinases appeared to be involved in this IL-6 induction from human cells. Finally, we also demonstrated that IL-6 was induced by these proteins and Chlamydia from mouse primary reproductive cell cultures (BALB/C mice) and mouse laboratory cell models. Conclusions We have demonstrated that IL-6 may be a key factor for the chlamydial disease outcome in humans, given that primary human reproductive epithelial cell culture showed considerable variation in IL-6 response to Chlamydia or chlamydial proteins, and that the presence of live Chlamydia (but not UV killed) during co-culture resulted in a reduced IL-6 response suggesting this response may be moderated by the presence of the organism.
Resumo:
Dengue is the most prevalent arthropod-borne virus, with at least 40% of the world’s population at risk of infection each year. In Australia, dengue is not endemic, but viremic travelers trigger outbreaks involving hundreds of cases. We compared the susceptibility of Aedes aegypti mosquitoes from two geographically isolated populations with two strains of dengue virus serotype 2. We found, interestingly, that mosquitoes from a city with no history of dengue were more susceptible to virus than mosquitoes from an outbreak-prone region, particularly with respect to one dengue strain. These findings suggest recent evolution of population-based differences in vector competence or different historical origins. Future genomic comparisons of these populations could reveal the genetic basis of vector competence and the relative role of selection and stochastic processes in shaping their differences. Lastly, we show the novel finding of a correlation between midgut dengue titer and titer in tissues colonized after dissemination.
Resumo:
The BRC repeat is a structural motif in the tumor suppressor BRCA2 (breast cancer type 2 susceptibility protein), which promotes homologous recombination (HR) by regulating RAD51 recombinase activity. To date, the BRC repeat has not been observed in other proteins, so that its role in HR is inferred only in the context of BRCA2. Here, we identified a BRC repeat variant, named BRCv, in the RECQL5 helicase, which possesses anti-recombinase activity in vitro and suppresses HR and promotes cellular resistance to camptothecin-induced replication stress in vivo. RECQL5-BRCv interacted with RAD51 through two conserved motifs similar to those in the BRCA2-BRC repeat. Mutations of either motif compromised functions of RECQL5, including association with RAD51, inhibition of RAD51-mediated D-loop formation, suppression of sister chromatid exchange, and resistance to camptothecin-induced replication stress. Potential BRCvs were also found in other HR regulatory proteins, including Srs2 and Sgs1, which possess anti-recombinase activities similar to that of RECQL5. A point mutation in the predicted Srs2-BRCv disrupted the ability of the protein to bind RAD51 and to inhibit D-loop formation. Thus, BRC is a common RAD51 interaction module that can be utilized by different proteins to either promote HR, as in the case of BRCA2, or to suppress HR, as in RECQL5.
Resumo:
Inherited genetic traits co-determine the susceptibility of an individual to a toxic chemical. Special emphasis has been put on individual responses to environmental and industrial carcinogens, but other chronic diseases are of increasing interest. Polymorphisms of relevant xenobiotic metabolising enzymes may be used as toxicological susceptibility markers. A growing number of genes encoding enzymes involved in biotransformation of toxicants and in cellular defence against toxicant-induced damage to the cells has been identified and cloned, leading to increased knowledge of allelic variants of genes and genetic defects that may result in a differential susceptibility toward environmental toxicants. "Low penetrating" polymorphisms in metabolism genes tend to be much more common in the population than allelic variants of "high penetrating" cancer genes, and are therefore of considerable importance from a public health point of view. Positive associations between cancer and CYP1A1 alleles, in particular the *2C I462V allele, were found for tissues following the aerodigestive tract. Again, in most cases, the effect of the variant CYP1A1 allele becomes apparent or clearer in connection with the GSTM1 null allele. The CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squameous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has also pointed to interactive effects. Of particular interest for the industrial and environmental field is the isozyme CYP2E1. Several genotypes of this isozyme have been characterised which seem to be associated with different levels of expression of enzyme activity. The acetylator status for NAT2 can be determined by genotyping or by phenotyping. In the pathogenesis of human bladder cancer due to occupational exposure to "classical" aromatic amines (benzidine, 4-aminodiphenyl, 1-naphthylamine) acetylation by NAT2 is regarded as a detoxication step. Interestingly, the underlying European findings of a higher susceptibility of slow acetylators towards aromatic amines are in contrast to findings in Chinese workers occupationally exposed to aromatic amines which points to different mechanisms of susceptibility between European and Chinese populations. Regarding human bladder cancer, the hypothesis has been put forward that genetic polymorphism of GSTM1 might be linked with the occurrence of this tumour type. This supports the hypothesis that exposure to PAH might causally be involved in urothelial cancers. The human polymorphic GST catalysing conjugation of halomethanes, dihalomethanes, ethylene oxide and a number of other industrial compounds could be characterised as a class theta enzyme (GSTT1) by means of molecular biology. "Conjugator" and "non-conjugator" phenotypes are coincident with the presence and absence of the GSTT1 gene. There are wide variations in the frequencies of GSTT1 deletion (GSTT1 *0/0) among different ethnicities. Human phenotyping is facilitated by the GST activity towards methyl bromide or ethylene oxide in erythrocytes which is representative of the metabolic GSTT1 competence of the entire organism. Inter-individual variations in xenobiotic metabolism capacities may be due to polymorphisms of the genes coding for the enzymes themselves or of the genes coding for the receptors or transcription factors which regulate the expression of the enzymes. Also, polymorphisms in several regions of genes may cause altered ligand affinity, transactivation activity or expression levels of the receptor subsequently influencing the expression of the downstream target genes. Studies of individual susceptibility to toxicants and gene-environment interaction are now emerging as an important component of molecular epidemiology.