150 resultados para STEADY-STATE METHOD
Resumo:
This paper estimates a simultaneous-equation model of wages and prices for Australia, underpinned by a competing claims framework of imperfect competition. Two separate co-integrating relationships for wages and prices are identified by imposing the economic hypotheses implied by the theory. The steady-state relationships for wages and prices are then embedded in a parsimonious, dynamic wage-price model. The final model is both simple and parsimonious and able to describe the process of wage and price inflation in Australia
Resumo:
The Queensland University of Technology (QUT) allows the presentation of theses for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of ten published /submitted papers and book chapters of which nine have been published and one is under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of investigating multilevel topologies for high quality and high power applications, with specific emphasis on renewable energy systems. The rapid evolution of renewable energy within the last several years has resulted in the design of efficient power converters suitable for medium and high-power applications such as wind turbine and photovoltaic (PV) systems. Today, the industrial trend is moving away from heavy and bulky passive components to power converter systems that use more and more semiconductor elements controlled by powerful processor systems. However, it is hard to connect the traditional converters to the high and medium voltage grids, as a single power switch cannot stand at high voltage. For these reasons, a new family of multilevel inverters has appeared as a solution for working with higher voltage levels. Besides this important feature, multilevel converters have the capability to generate stepped waveforms. Consequently, in comparison with conventional two-level inverters, they present lower switching losses, lower voltage stress across loads, lower electromagnetic interference (EMI) and higher quality output waveforms. These properties enable the connection of renewable energy sources directly to the grid without using expensive, bulky, heavy line transformers. Additionally, they minimize the size of the passive filter and increase the durability of electrical devices. However, multilevel converters have only been utilised in very particular applications, mainly due to the structural limitations, high cost and complexity of the multilevel converter system and control. New developments in the fields of power semiconductor switches and processors will favor the multilevel converters for many other fields of application. The main application for the multilevel converter presented in this work is the front-end power converter in renewable energy systems. Diode-clamped and cascade converters are the most common type of multilevel converters widely used in different renewable energy system applications. However, some drawbacks – such as capacitor voltage imbalance, number of components, and complexity of the control system – still exist, and these are investigated in the framework of this thesis. Various simulations using software simulation tools are undertaken and are used to study different cases. The feasibility of the developments is underlined with a series of experimental results. This thesis is divided into two main sections. The first section focuses on solving the capacitor voltage imbalance for a wide range of applications, and on decreasing the complexity of the control strategy on the inverter side. The idea of using sharing switches at the output structure of the DC-DC front-end converters is proposed to balance the series DC link capacitors. A new family of multioutput DC-DC converters is proposed for renewable energy systems connected to the DC link voltage of diode-clamped converters. The main objective of this type of converter is the sharing of the total output voltage into several series voltage levels using sharing switches. This solves the problems associated with capacitor voltage imbalance in diode-clamped multilevel converters. These converters adjust the variable and unregulated DC voltage generated by renewable energy systems (such as PV) to the desirable series multiple voltage levels at the inverter DC side. A multi-output boost (MOB) converter, with one inductor and series output voltage, is presented. This converter is suitable for renewable energy systems based on diode-clamped converters because it boosts the low output voltage and provides the series capacitor at the output side. A simple control strategy using cross voltage control with internal current loop is presented to obtain the desired voltage levels at the output voltage. The proposed topology and control strategy are validated by simulation and hardware results. Using the idea of voltage sharing switches, the circuit structure of different topologies of multi-output DC-DC converters – or multi-output voltage sharing (MOVS) converters – have been proposed. In order to verify the feasibility of this topology and its application, steady state and dynamic analyses have been carried out. Simulation and experiments using the proposed control strategy have verified the mathematical analysis. The second part of this thesis addresses the second problem of multilevel converters: the need to improve their quality with minimum cost and complexity. This is related to utilising asymmetrical multilevel topologies instead of conventional multilevel converters; this can increase the quality of output waveforms with a minimum number of components. It also allows for a reduction in the cost and complexity of systems while maintaining the same output quality, or for an increase in the quality while maintaining the same cost and complexity. Therefore, the asymmetrical configuration for two common types of multilevel converters – diode-clamped and cascade converters – is investigated. Also, as well as addressing the maximisation of the output voltage resolution, some technical issues – such as adjacent switching vectors – should be taken into account in asymmetrical multilevel configurations to keep the total harmonic distortion (THD) and switching losses to a minimum. Thus, the asymmetrical diode-clamped converter is proposed. An appropriate asymmetrical DC link arrangement is presented for four-level diode-clamped converters by keeping adjacent switching vectors. In this way, five-level inverter performance is achieved for the same level of complexity of the four-level inverter. Dealing with the capacitor voltage imbalance problem in asymmetrical diodeclamped converters has inspired the proposal for two different DC-DC topologies with a suitable control strategy. A Triple-Output Boost (TOB) converter and a Boost 3-Output Voltage Sharing (Boost-3OVS) converter connected to the four-level diode-clamped converter are proposed to arrange the proposed asymmetrical DC link for the high modulation indices and unity power factor. Cascade converters have shown their abilities and strengths in medium and high power applications. Using asymmetrical H-bridge inverters, more voltage levels can be generated in output voltage with the same number of components as the symmetrical converters. The concept of cascading multilevel H-bridge cells is used to propose a fifteen-level cascade inverter using a four-level H-bridge symmetrical diode-clamped converter, cascaded with classical two-level Hbridge inverters. A DC voltage ratio of cells is presented to obtain maximum voltage levels on output voltage, with adjacent switching vectors between all possible voltage levels; this can minimize the switching losses. This structure can save five isolated DC sources and twelve switches in comparison to conventional cascade converters with series two-level H bridge inverters. To increase the quality in presented hybrid topology with minimum number of components, a new cascade inverter is verified by cascading an asymmetrical four-level H-bridge diode-clamped inverter. An inverter with nineteen-level performance was achieved. This synthesizes more voltage levels with lower voltage and current THD, rather than using a symmetrical diode-clamped inverter with the same configuration and equivalent number of power components. Two different predictive current control methods for the switching states selection are proposed to minimise either losses or THD of voltage in hybrid converters. High voltage spikes at switching time in experimental results and investigation of a diode-clamped inverter structure raised another problem associated with high-level high voltage multilevel converters. Power switching components with fast switching, combined with hard switched-converters, produce high di/dt during turn off time. Thus, stray inductance of interconnections becomes an important issue and raises overvoltage and EMI issues correlated to the number of components. Planar busbar is a good candidate to reduce interconnection inductance in high power inverters compared with cables. The effect of different transient current loops on busbar physical structure of the high-voltage highlevel diode-clamped converters is highlighted. Design considerations of proper planar busbar are also presented to optimise the overall design of diode-clamped converters.
Resumo:
This study examined the effect of flocculants on the filtration parameters of bagasse pulp. In the first phase, flocculants were effective for improving the fiber retention of three different bagasse pulp slurries, based on flocculant system studies using a dynamic drainage jar. In the second phase, pulp pads were formed using these flocculants and the steady-state permeability and compressibility parameters were measured. The results showed that the flocculant system that was effective for a pulp slurry was entirely ineffective in improving pulp pad permeability or compressibility during the second experimental phase for two of the bagasse pulp samples.
Resumo:
The paper discusses the operating principles and control characteristics of a dynamic voltage restorer (DVR) that protects sensitive but unbalanced and/or distorted loads. The main aim of the DVR is to regulate the voltage at the load terminal irrespective of sag/swell, distortion, or unbalance in the supply voltage. In this paper, the DVR is operated in such a fashion that it does not supply or absorb any active power during the steady-state operation. Hence, a DC capacitor rather than a DC source can supply the voltage source inverter realizing the DVR. The proposed DVR operation is verified through extensive digital computer simulation studies.
Resumo:
This paper presents a case study of a design for a complete microair vehicle thruster. Fixed-pitch small-scale rotors, brushless motors, lithium-polymer cells, and embedded control are combined to produce a mechanically simple, high-performance thruster with potentially high reliability. The custom rotor design requires a balance between manufacturing simplicity and rigidity of a blade versus its aerodynamic performance. An iterative steady-state aeroelastic simulator is used for holistic blade design. The aerodynamic load disturbances of the rotor-motor system in normal conditions are experimentally characterized. The motors require fast dynamic response for authoritative vehicle flight control. We detail a dynamic compensator that achieves satisfactory closed-loop response time. The experimental rotor-motor plant displayed satisfactory thrust performance and dynamic response.
Resumo:
Although current assessments of agricultural management practices on soil organic C (SOC) dynamics are usually conducted without any explicit consideration of limits to soil C storage, it has been hypothesized that the SOC pool has an upper, or saturation limit with respect to C input levels at steady state. Agricultural management practices that increase C input levels over time produce a new equilibrium soil C content. However, multiple C input level treatments that produce no increase in SOC stocks at equilibrium show that soils have become saturated with respect to C inputs. SOC storage of added C input is a function of how far a soil is from saturation level (saturation deficit) as well as C input level. We tested experimentally if C saturation deficit and varying C input levels influenced soil C stabilization of added C-13 in soils varying in SOC content and physiochemical characteristics. We incubated for 2.5 years soil samples from seven agricultural sites that were closer to (i.e., A-horizon) or further from (i.e., C-horizon) their C saturation limit. At the initiation of the incubations, samples received low or high C input levels of 13 C-labeled wheat straw. We also tested the effect of Ca addition and residue quality on a subset of these soils. We hypothesized that the proportion of C stabilized would be greater in samples with larger C Saturation deficits (i.e., the C- versus A-horizon samples) and that the relative stabilization efficiency (i.e., Delta SCC/Delta C input) would decrease as C input level increased. We found that C saturation deficit influenced the stabilization of added residue at six out of the seven sites and C addition level affected the stabilization of added residue in four sites, corroborating both hypotheses. Increasing Ca availability or decreasing residue quality had no effect on the stabilization of added residue. The amount of new C stabilized was significantly related to C saturation deficit, supporting the hypothesis that C saturation influenced C stabilization at all our sites. Our results suggest that soils with low C contents and degraded lands may have the greatest potential and efficiency to store added C because they are further from their saturation level. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Current estimates of soil C storage potential are based on models or factors that assume linearity between C input levels and C stocks at steady-state, implying that SOC stocks could increase without limit as C input levels increase. However, some soils show little or no increase in steady-state SOC stock with increasing C input levels suggesting that SOC can become saturated with respect to C input. We used long-term field experiment data to assess alternative hypotheses of soil carbon storage by three simple models: a linear model (no saturation), a one-pool whole-soil C saturation model, and a two-pool mixed model with C saturation of a single C pool, but not the whole soil. The one-pool C saturation model best fit the combined data from 14 sites, four individual sites were best-fit with the linear model, and no sites were best fit by the mixed model. These results indicate that existing agricultural field experiments generally have too small a range in C input levels to show saturation behavior, and verify the accepted linear relationship between soil C and C input used to model SOM dynamics. However, all sites combined and the site with the widest range in C input levels were best fit with the C-saturation model. Nevertheless, the same site produced distinct effective stabilization capacity curves rather than an absolute C saturation level. We conclude that the saturation of soil C does occur and therefore the greatest efficiency in soil C sequestration will be in soils further from C saturation.
Resumo:
Power system stabilizers (PSS) work well at the particular network configuration and steady state conditions for which they were designed. Once conditions change, their performance degrades. This can be overcome by an intelligent nonlinear PSS based on fuzzy logic. Such a fuzzy logic power system stabilizer (FLPSS) is developed, using speed and power deviation as inputs, and provides an auxiliary signal for the excitation system of a synchronous motor in a multimachine power system environment. The FLPSS's effect on the system damping is then compared with a conventional power system stabilizer's (CPSS) effect on the system. The results demonstrate an improved system performance with the FLPSS and also that the FLPSS is robust
Resumo:
A one-dimensional pressure filtration model that can be used to predict the behaviour of bagasse pulp has been developed and verified in this study.The dynamic filtration model uses steady state compressibility parameters determined experimentally by uniaxial loading. The compressibility parameters M and N for depithed bagasse pulp were determined to be in the ranges 3000–8000kPa and 2.5–3.0 units, respectively. The model also incorporates experimentally determined steady state permeability data from separate experiments to predict the pulp concentration and fibre pressure throughout a pulp mat during dynamic filtration. Under steady state conditions, a variable Kozeny factor required different values for the permeability parameters when compared to a constant Kozeny factor. The specific surface area was 25–30% lower and the swelling factor was 20–25% higher when a variable Kozeny factor was used. Excellent agreement between experimental data and the dynamic filtration model was achieved when a variable Kozeny factor was used.
Resumo:
Motor vehicle emission factors are generally derived from driving tests mimicking steady state conditions or transient drive cycles. However, neither of these test conditions completely represents real world driving conditions. In particular, they fail to determine emissions generated during the accelerating phase – a condition in which urban buses spend much of their time. In this study we analyse and compare the results of time-dependant emission measurements conducted on diesel and compressed natural gas (CNG) buses during an urban driving cycle on a chassis dynamometer and we derive power-law expressions relating carbon dioxide (CO2) emission factors to the instantaneous speed while accelerating from rest. Emissions during acceleration are compared with that during steady speed operation. These results have important implications for emission modelling particularly under congested traffic conditions.
Resumo:
IEC Technical Committee 57 (TC57) published a series of standards and technical reports for “Communication networks and systems for power utility automation” as the IEC 61850 series. Sampled value (SV) process buses allow for the removal of potentially lethal voltages and damaging currents inside substation control rooms and marshalling kiosks, reduce the amount of cabling required in substations, and facilitate the adoption of non-conventional instrument transformers. IEC 61850-9-2 provides an inter-operable solution to support multi-vendor process bus solutions. A time synchronisation system is required for a SV process bus, however the details are not defined in IEC 61850-9-2. IEEE Std 1588-2008, Precision Time Protocol version 2 (PTPv2), provides the greatest accuracy of network based time transfer systems, with timing errors of less than 100 ns achievable. PTPv2 is proposed by the IEC Smart Grid Strategy Group to synchronise IEC 61850 based substation automation systems. IEC 61850-9-2, PTPv2 and Ethernet are three complementary protocols that together define the future of sampled value digital process connections in substations. The suitability of PTPv2 for use with SV is evaluated, with preliminary results indicating that steady state performance is acceptable (jitter < 300 ns), and that extremely stable grandmaster oscillators are required to ensure SV timing requirements are met when recovering from loss of external synchronisation (such as GPS).
Resumo:
The hysteresis modulation for power electronic converters is attractive in many different applications because of its unmatched dynamic response and wide command-tracking bandwidth. Its application and beneftis for two-level converters are well understood, but the extension of this strategy to multilevel converters is still under development. This paper summarizes and reviews the various hysteresis modulation approaches available in the literature for multilevel converters. The pros and cons of various techniques are described and compared for tracking the reference signal in order to attain an adequate switching optimization, excellent dynamic responses and high accuracy in steady-state operation. By using the recently developed multilevel hysteresis modulation approaches the advantages of using several accessible dc potentials in a multilevel inverter has been fully exploited. All of these hysteresis modulation approaches are testing for tracking a current reference when applied to a fivelevel inveter. The relevant simulation and experimental result are also presented. This study will provide a useful framweork and point of reference for the future development of hysteresis modulation for multilevel converters.
Resumo:
Climate change effects are expected to substantially raise the average sea level. It is widely assumed that this raise will have a severe adverse impact on saltwater intrusion processes in coastal aquifers. In this study we hypothesize that a natural mechanism, identified as the “lifting process” has the potential to mitigate or in some cases completely reverse the adverse intrusion effects induced by sea-level rise. A detailed numerical study using the MODFLOW-family computer code SEAWAT, was completed to test this hypothesis and to understand the effects of this lifting process in both confined and unconfined systems. Our conceptual simulation results show that if the ambient recharge remains constant, the sea-level rise will have no long-term impact (i.e., it will not affect the steady-state salt wedge) on confined aquifers. Our transient confined flow simulations show a self-reversal mechanism where the wedge which will initially intrude into the formation due to the sea-level rise would be naturally driven back to the original position. In unconfined systems, the lifting process would have a lesser influence due to changes in the value of effective transmissivity. A detailed sensitivity analysis was also completed to understand the sensitivity of this self-reversal effect to various aquifer parameters.
Resumo:
The fluid flow and heat transfer inside a triangular enclosure due to instantaneous heating on the inclined walls are investigated using an improved scaling analysis and direct numerical simulations. The development of the unsteady natural convection boundary layer under the inclined walls may be classified into three distinct stages including a start-up stage, a transitional stage and a steady state stage, which can be clearly identified in the analytical and numerical results. A new triple-layer integral approach of scaling analysis has been considered to obtain major scaling relations of the velocity, thicknesses, Nusselt number and the flow development time of the natural convection boundary layer and verified by direct numerical simulations over a wide range of flow parameters.
Resumo:
A scaling analysis is performed for the transient boundary layer established adjacent to an inclined flat plate following a ramp cooling boundary condition. The imposed wall temperature decreases linearly up to a specific value over a specific time. It is revealed that if the ramp time is sufficiently large then the boundary layer reaches quasi-steady mode before the growth of the temperature is finished. However, if the ramp time is shorter then the steady state of the boundary layer may be reached after the growth of the temperature is completed. In this case, the ultimate steady state is the same as if the start up had been instantaneous. Note that the cold boundary layer adjacent to the plate is potentially unstable to Rayleigh-Bénard instability if the Rayleigh number exceeds a certain critical value for this cooling case. The onset of instability may set in at different stages of the boundary layer development. A proper identification of the time when the instability may set in is discussed. A numerical verification of the time for the onset of instability is presented in this study. Different flow regimes based on the stability of the boundary layer have also been discussed with numerical results.