68 resultados para SPATIAL DISTRIBUTION
Resumo:
Background: Developing sampling strategies to target biological pests such as insects in stored grain is inherently difficult owing to species biology and behavioural characteristics. The design of robust sampling programmes should be based on an underlying statistical distribution that is sufficiently flexible to capture variations in the spatial distribution of the target species. Results: Comparisons are made of the accuracy of four probability-of-detection sampling models - the negative binomial model,1 the Poisson model,1 the double logarithmic model2 and the compound model3 - for detection of insects over a broad range of insect densities. Although the double log and negative binomial models performed well under specific conditions, it is shown that, of the four models examined, the compound model performed the best over a broad range of insect spatial distributions and densities. In particular, this model predicted well the number of samples required when insect density was high and clumped within experimental storages. Conclusions: This paper reinforces the need for effective sampling programs designed to detect insects over a broad range of spatial distributions. The compound model is robust over a broad range of insect densities and leads to substantial improvement in detection probabilities within highly variable systems such as grain storage.
Resumo:
Purpose To examine choroidal thickness (ChT) and its spatial distribution across the posterior pole in pediatric subjects with normal ocular health and minimal refractive error. Methods ChT was assessed using spectral domain optical coherence tomography (OCT) in 194 children aged between 4-12 years, with spherical equivalent refractive errors between +1.25 and -0.50 DS. A series of OCT scans were collected, imaging the choroid along 4 radial scan lines centered on the fovea (each separated by 45°). Frame averaging was used to reduce noise and enhance chorio-scleral junction visibility. The transverse scale of each scan was corrected to account for magnification effects associated with axial length. Two independent masked observers manually segmented the OCT images to determine ChT at foveal centre, and averaged across a series of perifoveal zones over the central 5 mm. Results The average subfoveal ChT was 330 ± 65 µm (range 189-538 µm), and was significantly influenced by age (p=0.04). The ChT of the 4 to 6 year old age group (312 ± 62 µm) was significantly thinner compared to the 7 to 9 year olds (337 ± 65 µm, p<0.05) and bordered on significance compared to the 10 to 12 year olds (341 ± 61 µm, p=0.08). ChT also exhibited significant variation across the posterior pole, being thicker in more central regions. The choroid was thinner nasally and inferiorly compared to temporally and superiorly. Multiple regression analysis revealed age, axial length and anterior chamber depth were significantly associated with subfoveal ChT (p<0.001). Conclusions ChT increases significantly from early childhood to adolescence. This appears to be a normal feature of childhood eye growth.
Resumo:
The current state of knowledge in relation to first flush does not provide a clear understanding of the role of rainfall and catchment characteristics in influencing this phenomenon. This is attributed to the inconsistent findings from research studies due to the unsatisfactory selection of first flush indicators and how first flush is defined. The research study discussed in this thesis provides the outcomes of a comprehensive analysis on the influence of rainfall and catchment characteristics on first flush behaviour in residential catchments. Two sets of first flush indicators are introduced in this study. These indicators were selected such that they are representative in explaining in a systematic manner the characteristics associated with first flush. Stormwater samples and rainfall-runoff data were collected and recorded from stormwater monitoring stations established at three urban catchments at Coomera Waters, Gold Coast, Australia. In addition, historical data were also used to support the data analysis. Three water quality parameters were analysed, namely, total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN). The data analyses were primarily undertaken using multi criteria decision making methods, PROMETHEE and GAIA. Based on the data obtained, the pollutant load distribution curve (LV) was determined for the individual rainfall events and pollutant types. Accordingly, two sets of first flush indicators were derived from the curve, namely, cumulative load wash-off for every 10% of runoff volume interval (interval first flush indicators or LV) from the beginning of the event and the actual pollutant load wash-off during a 10% increment in runoff volume (section first flush indicators or P). First flush behaviour showed significant variation with pollutant types. TSS and TP showed consistent first flush behaviour. However, the dissolved fraction of TN showed significant differences to TSS and TP first flush while particulate TN showed similarities. Wash-off of TSS, TP and particulate TN during the first 10% of the runoff volume showed no influence from corresponding rainfall intensity. This was attributed to the wash-off of weakly adhered solids on the catchment surface referred to as "short term pollutants" or "weakly adhered solids" load. However, wash-off after 10% of the runoff volume showed dependency on the rainfall intensity. This is attributed to the wash-off of strongly adhered solids being exposed when the weakly adhered solids diminish. The wash-off process was also found to depend on rainfall depth at the end part of the event as the strongly adhered solids are loosened due to impact of rainfall in the earlier part of the event. Events with high intensity rainfall bursts after 70% of the runoff volume did not demonstrate first flush behaviour. This suggests that rainfall pattern plays a critical role in the occurrence of first flush. Rainfall intensity (with respect to the rest of the event) that produces 10% to 20% runoff volume play an important role in defining the magnitude of the first flush. Events can demonstrate high magnitude first flush when the rainfall intensity occurring between 10% and 20% of the runoff volume is comparatively high while low rainfall intensities during this period produces low magnitude first flush. For events with first flush, the phenomenon is clearly visible up to 40% of the runoff volume. This contradicts the common definition that first flush only exists, if for example, 80% of the pollutant mass is transported in the first 30% of runoff volume. First flush behaviour for TN is different compared to TSS and TP. Apart from rainfall characteristics, the composition and the availability of TN on the catchment also play an important role in first flush. The analysis confirmed that events with low rainfall intensity can produce high magnitude first flush for the dissolved fraction of TN, while high rainfall intensity produce low dissolved TN first flush. This is attributed to the source limiting behaviour of dissolved TN wash-off where there is high wash-off during the initial part of a rainfall event irrespective of the intensity. However, for particulate TN, the influence of rainfall intensity on first flush characteristics is similar to TSS and TP. The data analysis also confirmed that first flush can occur as high magnitude first flush, low magnitude first flush or non existence of first flush. Investigation of the influence of catchment characteristics on first flush found that the key factors that influence the phenomenon are the location of the pollutant source, spatial distribution of the pervious and impervious surfaces in the catchment, drainage network layout and slope of the catchment. This confirms that first flush phenomenon cannot be evaluated based on a single or a limited set of parameters as a number of catchment characteristics should be taken into account. Catchments where the pollutant source is located close to the outlet, a high fraction of road surfaces, short travel time to the outlet, with steep slopes can produce high wash-off load during the first 50% of the runoff volume. Rainfall characteristics have a comparatively dominant impact on the wash-off process compared to the catchment characteristics. In addition, the pollutant characteristics also should be taken into account in designing stormwater treatment systems due to different wash-off behaviour. Analysis outcomes confirmed that there is a high TSS load during the first 20% of the runoff volume followed by TN which can extend up to 30% of the runoff volume. In contrast, high TP load can exist during the initial and at the end part of a rainfall event. This is related to the composition of TP available for the wash-off.
Resumo:
Understanding the physical encoding of a memory (the engram) is a fundamental question in neuroscience. Although it has been established that the lateral amygdala is a key site for encoding associative fear memory, it is currently unclear whether the spatial distribution of neurons encoding a given memory is random or stable. Here we used spatial principal components analysis to quantify the topography of activated neurons, in a select region of the lateral amygdala, from rat brains encoding a Pavlovian conditioned fear memory. Our results demonstrate a stable, spatially patterned organization of amygdala neurons are activated during the formation of a Pavlovian conditioned fear memory. We suggest that this stable neuronal assembly constitutes a spatial dimension of the engram. © 2011 This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
Resumo:
Introduction The dose to skin surface is an important factor for many radiotherapy treatment techniques. It is known that TPS predicted surface doses can be significantly different from actual ICRP skin doses as defined at 70 lm. A number of methods have been implemented for the accurate determination of surface dose including use of specific dosimeters such as TLDs and radiochromic film as well as Monte Carlo calculations. Stereotactic radiosurgery involves delivering very high doses per treatment fraction using small X-ray fields. To date, there has been limited data on surface doses for these very small field sizes. The purpose of this work is to evaluate surface doses by both measurements and Monte Carlo calculations for very small field sizes. Methods All measurements were performed on a Novalis Tx linear accelerator which has a 6 MV SRS X-ray beam mode which uses a specially thin flattening filter. Beam collimation was achieved by circular cones with apertures that gave field sizes ranging from 4 to 30 mm at the isocentre. The relative surface doses were measured using Gafchromic EBT3 film which has the active layer at a depth similar to the ICRP skin dose depth. Monte Carlo calculations were performed using the BEAMnrc/EGSnrc Monte Carlo codes (V4 r225). The specifications of the linear accelerator, including the collimator, were provided by the manufacturer. Optimisation of the incident X-ray beam was achieved by an iterative adjustment of the energy, spatial distribution and radial spread of the incident electron beam striking the target. The energy cutoff parameters were PCUT = 0.01 MeV and ECUT = 0.700 - MeV. Directional bremsstrahlung splitting was switched on for all BEAMnrc calculations. Relative surface doses were determined in a layer defined in a water phantom of the same thickness and depth as compared to the active later in the film. Results Measured surface doses using the EBT3 film varied between 13 and 16 % for the different cones with an uncertainty of 3 %. Monte Carlo calculated surface doses were in agreement to better than 2 % to the measured doses for all the treatment cones. Discussion and conclusions This work has shown the consistency of surface dose measurements using EBT3 film with Monte Carlo predicted values within the uncertainty of the measurements. As such, EBT3 film is recommended for in vivo surface dose measurements.
Resumo:
The lipid composition of the human lens is distinct from most other tissues in that it is high in dihydrosphingomyelin and the most abundant glycerophospholipids in the lens are unusual 1-O-alkyl-ether linked phosphatidylethanolamines and phosphatidylserines. In this study, desorption electrospray ionization (DESI) mass spectrometry-imaging was used to determine the distribution of these lipids in the human lens along with other lipids including, ceramides, ceramide-1-phosphates, and lyso 1-O-alkyl ethers. To achieve this, 25 μm lens slices were mounted onto glass slides and analyzed using a linear ion-trap mass spectrometer equipped with a custom-built, 2-D automated DESI source. In contrast to other tissues that have been previously analyzed by DESI, the presence of a strong acid in the spray solvent was required to desorb lipids directly from lens tissue. Distinctive distributions were observed for [M + H]+ ions arising from each lipid class. Of particular interest were ionized 1-O-alkyl phosphatidylethanolamines and phosphatidylserines, PE (18:1e/18:1), and PS (18:1e/18:1), which were found in a thin ring in the outermost region of the lens. This distribution was confirmed by quantitative analysis of lenses that were sectioned into four distinct regions (outer, barrier, inner, and core), extracted and analyzed by electrospray ionization tandem mass spectrometry. DESI-imaging also revealed a complementary distribution for the structurally-related lyso 1-O-alkyl phosphatidylethanolamine, LPE (18:1e), which was localized closer to the centre of the lens. The data obtained in this study indicate that DESI-imaging is a powerful tool for determining the spatial distribution of human lens lipids. © 2010 American Society for Mass Spectrometry.
Resumo:
This paper estimates the benefit of a plan for information providing system on road administration by WebGIS. The system will reduce travel costs of visitors from their business establishments to a road administration section of a city office. The authors had individual interviews with the visitors at the section of the Ichikawa City Office. Annual total sum of travel costs was estimated at 37 million yen at most. This paper also proposes formulas which expect the frequency of visits or the total sum of travel costs from the spatial distribution of the business establishments without questionnaires.
Resumo:
The effects of an inductively rotating current were observed on low-frequency inductively coupled plasmas. The spatial distribution of electromagnetic fields was investigated in a cylindrical metallic chamber filled with dense plasma. The distribution of the magnetic field in plasma chamber was observed for rarefied and dense plasmas. The plasma was assumed as uniform in the electromagnetic fields. The results showed the plasma density increased with power and the electron density increased with pressure.
Resumo:
A complex low-pressure argon discharge plasma containing dust grains is studied using a Boltzmann equation for the electrons and fluid equations for the ions. Local effects, such as the spatial distribution of the dust density and external electric field, are included, and their effect on the electron energy distribution, the electron and ion number densities, the electron temperature, and the dust charge are investigated. It is found that dust particles can strongly affect the plasma parameters by modifying the electron energy distribution, the electron temperature, the creation and loss of plasma particles, as well as the spatial distributions of the electrons and ions. In particular, for sufficiently high grain density and/or size, in a low-pressure argon glow discharge, the Druyvesteyn-like electron distribution in pristine plasmas can become nearly Maxwellian. Electron collection by the dust grains is the main cause for the change in the electron distribution function.
Resumo:
Marine sediments around volcanic islands contain an archive of volcaniclastic deposits, which can be used to reconstruct the volcanic history of an area. Such records hold many advantages over often incomplete terrestrial datasets. This includes the potential for precise and continuous dating of intervening sediment packages, which allow a correlatable and temporally-constrained stratigraphic framework to be constructed across multiple marine sediment cores. Here, we discuss a marine record of eruptive and mass-wasting events spanning ~250 ka offshore of Montserrat, using new data from IODP Expedition 340, as well as previously collected cores. By using a combination of high-resolution oxygen isotope stratigraphy, AMS radiocarbon dating, biostratigraphy of foraminifera and calcareous nannofossils and clast componentry, we identify five major events at Soufriere Hills volcano since 250 ka. Lateral correlation of these events across sediment cores collected offshore of the south and south west of Montserrat, have improved our understanding of the timing, extent and associations between events in this area. Correlations reveal that powerful and potentially erosive density-currents travelled at least 33 km offshore, and demonstrate that marine deposits, produced by eruption-fed and mass-wasting events on volcanic islands, are heterogeneous in their spatial distribution. Thus, multiple drilling/coring sites are needed to reconstruct the full chronostratigraphy of volcanic islands. This multidisciplinary study will be vital to interpreting the chaotic records of submarine landslides at other sites drilled during Expedition 340 and provides a framework that can be applied to the stratigraphic analysis of sediments surrounding other volcanic islands.
Resumo:
Bone morphogen proteins (BMPs) are distributed along a dorsal-ventral (DV) gradient in many developing embryos. The spatial distribution of this signaling ligand is critical for correct DV axis specification. In various species, BMP expression is spatially localized, and BMP gradient formation relies on BMP transport, which in turn requires interactions with the extracellular proteins Short gastrulation/Chordin (Chd) and Twisted gastrulation (Tsg). These binding interactions promote BMP movement and concomitantly inhibit BMP signaling. The protease Tolloid (Tld) cleaves Chd, which releases BMP from the complex and permits it to bind the BMP receptor and signal. In sea urchin embryos, BMP is produced in the ventral ectoderm, but signals in the dorsal ectoderm. The transport of BMP from the ventral ectoderm to the dorsal ectoderm in sea urchin embryos is not understood. Therefore, using information from a series of experiments, we adapt the mathematical model of Mizutani et al. (2005) and embed it as the reaction part of a one-dimensional reaction–diffusion model. We use it to study aspects of this transport process in sea urchin embryos. We demonstrate that the receptor-bound BMP concentration exhibits dorsally centered peaks of the same type as those observed experimentally when the ternary transport complex (Chd-Tsg-BMP) forms relatively quickly and BMP receptor binding is relatively slow. Similarly, dorsally centered peaks are created when the diffusivities of BMP, Chd, and Chd-Tsg are relatively low and that of Chd-Tsg-BMP is relatively high, and the model dynamics also suggest that Tld is a principal regulator of the system. At the end of this paper, we briefly compare the observed dynamics in the sea urchin model to a version that applies to the fly embryo, and we find that the same conditions can account for BMP transport in the two types of embryos only if Tld levels are reduced in sea urchin compared to fly.
Resumo:
Representation of facial expressions using continuous dimensions has shown to be inherently more expressive and psychologically meaningful than using categorized emotions, and thus has gained increasing attention over recent years. Many sub-problems have arisen in this new field that remain only partially understood. A comparison of the regression performance of different texture and geometric features and investigation of the correlations between continuous dimensional axes and basic categorized emotions are two of these. This paper presents empirical studies addressing these problems, and it reports results from an evaluation of different methods for detecting spontaneous facial expressions within the arousal-valence dimensional space (AV). The evaluation compares the performance of texture features (SIFT, Gabor, LBP) against geometric features (FAP-based distances), and the fusion of the two. It also compares the prediction of arousal and valence, obtained using the best fusion method, to the corresponding ground truths. Spatial distribution, shift, similarity, and correlation are considered for the six basic categorized emotions (i.e. anger, disgust, fear, happiness, sadness, surprise). Using the NVIE database, results show that the fusion of LBP and FAP features performs the best. The results from the NVIE and FEEDTUM databases reveal novel findings about the correlations of arousal and valence dimensions to each of six basic emotion categories.
Resumo:
One of the Department of Defense's most pressing environmental problems is the efficient detection and identification of unexploded ordnance (UXO). In regions of highly magnetic soils, magnetic and electromagnetic sensors often detect anomalies that are of geologic origin, adding significantly to remediation costs. In order to develop predictive models for magnetic susceptibility, it is crucial to understand modes of formation and the spatial distribution of different iron oxides. Most rock types contain iron and their magnetic susceptibility is determined by the amount and form of iron oxides present. When rocks weather, the amount and form of the oxides change, producing concomitant changes in magnetic susceptibility. The type of iron oxide found in the weathered rock or regolith is a function of the duration and intensity of weathering, as well as the original content of iron in the parent material. The rate of weathering is controlled by rainfall and temperature; thus knowing the climate zone, the amount of iron in the lithology and the age of the surface will help predict the amount and forms of iron oxide. We have compiled analyses of the types, amounts, and magnetic properties of iron oxides from soils over a wide climate range, from semi arid grasslands, to temperate regions, and tropical forests. We find there is a predictable range of iron oxide type and magnetic susceptibility according to the climate zone, the age of the soil and the amount of iron in the unweathered regolith.
Resumo:
Magnetic behavior of soils can seriously hamper the performance of geophysical sensors. Currently, we have little understanding of the types of minerals responsible for the magnetic behavior, as well as their distribution in space and evolution through time. This study investigated the magnetic characteristics and mineralogy of Fe-rich soils developed on basaltic substrate in Hawaii. We measured the spatial distribution of magnetic susceptibility (χlf) and frequency dependence (χfd%) across three test areas in a well-developed eroded soil on Kaho'olawe and in two young soils on the Big Island of Hawaii. X-ray diffraction spectroscopy, x-ray fluorescence spectroscopy (XFCF), chemical dissolution, thermal analysis, and temperature-dependent magnetic studies were used to characterize soil development and mineralogy for samples from soil pits on Kaho'olawe, surface samples from all three test areas, and unweathered basalt from the Big Island of Hawaii. The measurements show a general increase in magnetic properties with increasing soil development. The XRF Fe data ranged from 13% for fresh basalt and young soils on the Big Island to 58% for material from the B horizon of Kaho'olawe soils. Dithionite-extractable and oxalate-extractable Fe percentages increase with soil development and correlate with χlf-and χfd%, respectively. Results from the temperature-dependent susceptibility measurements show that the high soil magnetic properties observed in geophysical surveys in Kaho'olawe are entirely due to neoformed minerals. The results of our studies have implications for the existing soil survey of Kaho'olawe and help identify methods to characterize magnetic minerals in tropical soils.
Resumo:
A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 A˚, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced "leopard skin"-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions, can capture processes that are otherwise obscured to the amino acid-based formalism.