182 resultados para Renilla reniformis luciferase vectors
Resumo:
Tobacco yellow dwarf virus (TbYDV, family Geminiviridae, genus Mastrevirus) is an economically important pathogen causing summer death and yellow dwarf disease in bean (Phaseolus vulgaris L.) and tobacco (Nicotiana tabacum L.), respectively. Prior to the commencement of this project, little was known about the epidemiology of TbYDV, its vector and host-plant range. As a result, disease control strategies have been restricted to regular poorly timed insecticide applications which are largely ineffective, environmentally hazardous and expensive. In an effort to address this problem, this PhD project was carried out in order to better understand the epidemiology of TbYDV, to identify its host-plant and vectors as well as to characterise the population dynamics and feeding physiology of the main insect vector and other possible vectors. The host-plants and possible leafhopper vectors of TbYDV were assessed over three consecutive growing seasons at seven field sites in the Ovens Valley, Northeastern Victoria, in commercial tobacco and bean growing properties. Leafhoppers and plants were collected and tested for the presence of TbYDV by PCR. Using sweep nets, twenty-three leafhopper species were identified at the seven sites with Orosius orientalis the predominant leafhopper. Of the 23 leafhopper species screened for TbYDV, only Orosius orientalis and Anzygina zealandica tested positive. Forty-two different plant species were also identified at the seven sites and tested. Of these, TbYDV was only detected in four dicotyledonous species, Amaranthus retroflexus, Phaseolus vulgaris, Nicotiana tabacum and Raphanus raphanistrum. Using a quadrat survey, the temporal distribution and diversity of vegetation at four of the field sites was monitored in order to assess the presence of, and changes in, potential host-plants for the leafhopper vector(s) and the virus. These surveys showed that plant composition and the climatic conditions at each site were the major influences on vector numbers, virus presence and the subsequent occurrence of tobacco yellow dwarf and bean summer death diseases. Forty-two plant species were identified from all sites and it was found that sites with the lowest incidence of disease had the highest proportion of monocotyledonous plants that are non hosts for both vector and the virus. In contrast, the sites with the highest disease incidence had more host-plant species for both vector and virus, and experienced higher temperatures and less rainfall. It is likely that these climatic conditions forced the leafhopper to move into the irrigated commercial tobacco and bean crop resulting in disease. In an attempt to understand leafhopper species diversity and abundance, in and around the field borders of commercially grown tobacco crops, leafhoppers were collected from four field sites using three different sampling techniques, namely pan trap, sticky trap and sweep net. Over 51000 leafhopper samples were collected, which comprised 57 species from 11 subfamilies and 19 tribes. Twentythree leafhopper species were recorded for the first time in Victoria in addition to several economically important pest species of crops other than tobacco and bean. The highest number and greatest diversity of leafhoppers were collected in yellow pan traps follow by sticky trap and sweep nets. Orosius orientalis was found to be the most abundant leafhopper collected from all sites with greatest numbers of this leafhopper also caught using the yellow pan trap. Using the three sampling methods mentioned above, the seasonal distribution and population dynamics of O. orientalis was studied at four field sites over three successive growing seasons. The population dynamics of the leafhopper was characterised by trimodal peaks of activity, occurring in the spring and summer months. Although O. orientalis was present in large numbers early in the growing season (September-October), TbYDV was only detected in these leafhoppers between late November and the end of January. The peak in the detection of TbYDV in O. orientalis correlated with the observation of disease symptoms in tobacco and bean and was also associated with warmer temperatures and lower rainfall. To understand the feeding requirements of Orosius orientalis and to enable screening of potential control agents, a chemically-defined artificial diet (designated PT-07) and feeding system was developed. This novel diet formulation allowed survival for O. orientalis for up to 46 days including complete development from first instar through to adulthood. The effect of three selected plant derived proteins, cowpea trypsin inhibitor (CpTi), Galanthus nivalis agglutinin (GNA) and wheat germ agglutinin (WGA), on leafhopper survival and development was assessed. Both GNA and WGA were shown to reduce leafhopper survival and development significantly when incorporated at a 0.1% (w/v) concentration. In contrast, CpTi at the same concentration did not exhibit significant antimetabolic properties. Based on these results, GNA and WGA are potentially useful antimetabolic agents for expression in genetically modified crops to improve the management of O. orientalis, TbYDV and the other pathogens it vectors. Finally, an electrical penetration graph (EPG) was used to study the feeding behaviour of O. orientalis to provide insights into TbYDV acquisition and transmission. Waveforms representing different feeding activity were acquired by EPG from adult O. orientalis feeding on two plant species, Phaseolus vulgaris and Nicotiana tabacum and a simple sucrose-based artificial diet. Five waveforms (designated O1-O5) were observed when O. orientalis fed on P. vulgaris, while only four (O1-O4) and three (O1-O3) waveforms were observed during feeding on N. tabacum and the artificial diet, respectively. The mean duration of each waveform and the waveform type differed markedly depending on the food source. This is the first detailed study on the tritrophic interactions between TbYDV, its leafhopper vector, O. orientalis, and host-plants. The results of this research have provided important fundamental information which can be used to develop more effective control strategies not only for O. orientalis, but also for TbYDV and other pathogens vectored by the leafhopper.
Resumo:
With regard to the long-standing problem of the semantic gap between low-level image features and high-level human knowledge, the image retrieval community has recently shifted its emphasis from low-level features analysis to high-level image semantics extrac- tion. User studies reveal that users tend to seek information using high-level semantics. Therefore, image semantics extraction is of great importance to content-based image retrieval because it allows the users to freely express what images they want. Semantic content annotation is the basis for semantic content retrieval. The aim of image anno- tation is to automatically obtain keywords that can be used to represent the content of images. The major research challenges in image semantic annotation are: what is the basic unit of semantic representation? how can the semantic unit be linked to high-level image knowledge? how can the contextual information be stored and utilized for image annotation? In this thesis, the Semantic Web technology (i.e. ontology) is introduced to the image semantic annotation problem. Semantic Web, the next generation web, aims at mak- ing the content of whatever type of media not only understandable to humans but also to machines. Due to the large amounts of multimedia data prevalent on the Web, re- searchers and industries are beginning to pay more attention to the Multimedia Semantic Web. The Semantic Web technology provides a new opportunity for multimedia-based applications, but the research in this area is still in its infancy. Whether ontology can be used to improve image annotation and how to best use ontology in semantic repre- sentation and extraction is still a worth-while investigation. This thesis deals with the problem of image semantic annotation using ontology and machine learning techniques in four phases as below. 1) Salient object extraction. A salient object servers as the basic unit in image semantic extraction as it captures the common visual property of the objects. Image segmen- tation is often used as the �rst step for detecting salient objects, but most segmenta- tion algorithms often fail to generate meaningful regions due to over-segmentation and under-segmentation. We develop a new salient object detection algorithm by combining multiple homogeneity criteria in a region merging framework. 2) Ontology construction. Since real-world objects tend to exist in a context within their environment, contextual information has been increasingly used for improving object recognition. In the ontology construction phase, visual-contextual ontologies are built from a large set of fully segmented and annotated images. The ontologies are composed of several types of concepts (i.e. mid-level and high-level concepts), and domain contextual knowledge. The visual-contextual ontologies stand as a user-friendly interface between low-level features and high-level concepts. 3) Image objects annotation. In this phase, each object is labelled with a mid-level concept in ontologies. First, a set of candidate labels are obtained by training Support Vectors Machines with features extracted from salient objects. After that, contextual knowledge contained in ontologies is used to obtain the �nal labels by removing the ambiguity concepts. 4) Scene semantic annotation. The scene semantic extraction phase is to get the scene type by using both mid-level concepts and domain contextual knowledge in ontologies. Domain contextual knowledge is used to create scene con�guration that describes which objects co-exist with which scene type more frequently. The scene con�guration is represented in a probabilistic graph model, and probabilistic inference is employed to calculate the scene type given an annotated image. To evaluate the proposed methods, a series of experiments have been conducted in a large set of fully annotated outdoor scene images. These include a subset of the Corel database, a subset of the LabelMe dataset, the evaluation dataset of localized semantics in images, the spatial context evaluation dataset, and the segmented and annotated IAPR TC-12 benchmark.
Resumo:
Vector field visualisation is one of the classic sub-fields of scientific data visualisation. The need for effective visualisation of flow data arises in many scientific domains ranging from medical sciences to aerodynamics. Though there has been much research on the topic, the question of how to communicate flow information effectively in real, practical situations is still largely an unsolved problem. This is particularly true for complex 3D flows. In this presentation we give a brief introduction and background to vector field visualisation and comment on the effectiveness of the most common solutions. We will then give some examples of current development on texture-based techniques, and given practical examples of their use in CFD research and hydrodynamic applications.
Resumo:
This paper presents a robust place recognition algorithm for mobile robots. The framework proposed combines nonlinear dimensionality reduction, nonlinear regression under noise, and variational Bayesian learning to create consistent probabilistic representations of places from images. These generative models are learnt from a few images and used for multi-class place recognition where classification is computed from a set of feature-vectors. Recognition can be performed in near real-time and accounts for complexity such as changes in illumination, occlusions and blurring. The algorithm was tested with a mobile robot in indoor and outdoor environments with sequences of 1579 and 3820 images respectively. This framework has several potential applications such as map building, autonomous navigation, search-rescue tasks and context recognition.
Resumo:
Common mode voltage generated by a power converter in combination with parasitic capacitive couplings is a potential source of shaft voltage in an AC motor drive system. In this paper, a three-phase motor drive system supplied with a single-phase AC-DC diode rectifier is investigated in order to reduce shaft voltage in a three-phase AC motor drive system. In this topology, the common mode voltage generated by the inverter is influenced by the AC-DC diode rectifier because the placement of the neutral point is changing in different rectifier circuit states. A pulse width modulation technique is presented by a proper placement of the zero vectors to reduce the common mode voltage level, which leads to a cost effective shaft voltage reduction technique without load current distortion, while keeping the switching frequency constant. Analysis and simulations have been presented to investigate the proposed method.
Resumo:
Occlusion is a big challenge for facial expression recognition (FER) in real-world situations. Previous FER efforts to address occlusion suffer from loss of appearance features and are largely limited to a few occlusion types and single testing strategy. This paper presents a robust approach for FER in occluded images and addresses these issues. A set of Gabor based templates is extracted from images in the gallery using a Monte Carlo algorithm. These templates are converted into distance features using template matching. The resulting feature vectors are robust to occlusion. Occluded eyes and mouth regions and randomly places occlusion patches are used for testing. Two testing strategies analyze the effects of these occlusions on the overall recognition performance as well as each facial expression. Experimental results on the Cohn-Kanade database confirm the high robustness of our approach and provide useful insights about the effects of occlusion on FER. Performance is also compared with previous approaches.
Resumo:
Cell based therapies as they apply to tissue engineering and regenerative medicine, require cells capable of self renewal and differentiation, and a prerequisite is to be able to prepare an effective dose of ex vivo expanded cells for autologous transplants. The in vivo identification of a source of physiologically relevant cell types suitable for cell therapies therefore figures as an integral part of tissue engineering. Stem cells serve as a reserve for biological repair, having the potential to differentiate into a number of specialised cell types within the body; they therefore represent the most useful candidates for cell based therapies. The primary goal of stem cell research is to produce cells that are both patient specific, as well as having properties suitable for the specific conditions for which they are intended to remedy. From a purely scientific perspective, stem cells allow scientists to gain a deeper understanding of developmental biology and regenerative therapies. Stem cells have acquired a number of uses for applications in regenerative medicine, immunotherapy, gene therapy, but it is in the area of tissue engineering that they generate most excitement, primarily as a result of their capacity for self-renewal and pluripotency. A unique feature of stem cells is their ability to maintain an uncommitted quiescent state in vivo and then, once triggered by conditions such as disease, injury or natural wear or tear, serve as a reservoir and natural support system to replenish lost cells. Although these cells retain the plasticity to differentiate into various tissues, being able to control this differentiation process is still one of the biggest challenges facing stem cell research. In an effort to harness the potential of these cells a number of studies have been conducted using both embryonic/foetal and adult stem cells. The use of embryonic stem cells (ESC) have been hampered by strong ethical and political concerns, this despite their perceived versatility due to their pluripotency. Ethical issues aside, other concerns raised with ESCs relates to the possibility of tumorigenesis, immune rejection and complications with immunosuppressive therapies, all of which adds layers of complications to the application ESC in research and which has led to the search for alternative sources for stem cells. The adult tissues in higher organisms harbours cells, termed adult stem cells, and these cells are reminiscent of unprogrammed stem cells. A number of sources of adult stem cells have been described. Bone marrow is by far the most accessible source of two potent populations of adult stem cells, namely haematopoietic stem cells (HSCs) and bone marrow mesenchymal stem cells (BMSCs). Autologously harvested adult stem cells can, in contrast to embryonic stem cells, readily be used in autografts, since immune rejection is not an issue; and their use in scientific research has not attracted the ethical concerns which have been the case with embryonic stem cells. The major limitation to their use, however, is the fact that adult stem cells are exceedingly rare in most tissues. This fact makes identifying and isolating these cells problematic; bone marrow being perhaps the only notable exception. Unlike the case of HSCs, there are as yet no rigorous criteria for characterizing MSCs. Changing acuity about the pluripotency of MSCs in recent studies has expanded their potential application; however, the underlying molecular pathways which impart the features distinctive to MSCs remain elusive. Furthermore, the sparse in vivo distribution of these cells imposes a clear limitation to their study in vitro. Also, when MSCs are cultured in vitro, there is a loss of the in vivo microenvironment, resulting in a progressive decline in proliferation potential and multipotentiality. This is further exacerbated with increased passage numbers in culture, characterized by the onset of senescence related changes. As a consequence, it is necessary to establish protocols for generating large numbers of MSCs but without affecting their differentiation potential. MSCs are capable of differentiating into mesenchymal tissue lineages, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Recent findings indicate that adult bone marrow may also contain cells that can differentiate into the mature, nonhematopoietic cells of a number of tissues, including cells of the liver, kidney, lung, skin, gastrointestinal tract, and myocytes of heart and skeletal muscle. MSCs can readily be expanded in vitro and can be genetically modified by viral vectors and be induced to differentiate into specific cell lineages by changing the microenvironment–properties which makes these cells ideal vehicles for cellular gene therapy. MSCs can also exert profound immunosuppressive effects via modulation of both cellular and innate immune pathways, and this property allows them to overcome the issue of immune rejection. Despite the many attractive features associated with MSCs, there are still many hurdles to overcome before these cells are readily available for use in clinical applications. The main concern relates to in vivo characterization and identification of MSCs. The lack of a universal biomarker, sparse in vivo distribution, and a steady age related decline in their numbers, makes it an obvious need to decipher the reprogramming pathways and critical molecular players which govern the characteristics unique to MSCs. This book presents a comprehensive insight into the biology of adult stem cells and their utility in current regeneration therapies. The adult stem cell populations reviewed in this book include bone marrow derived MSCs, adipose derived stem cells (ASCs), umbilical cord blood stem cells, and placental stem cells. The features such as MSC circulation and trafficking, neuroprotective properties, and the nurturing roles and differentiation potential of multiple lineages have been discussed in details. In terms of therapeutic applications, the strengths of MSCs have been presented and their roles in disease treatments such as osteoarthritis, Huntington’s disease, periodontal regeneration, and pancreatic islet transplantation have been discussed. An analysis comparing osteoblast differentiation of umbilical cord blood stem cells and MSCs has been reviewed, as has a comparison of human placental stem cells and ASCs, in terms of isolation, identification and therapeutic applications of ASC in bone, cartilage regeneration, as well as myocardial regeneration. It is my sincere hope that this book will update the reader as to the research progress of MSC biology and potential use of these cells in clinical applications. It will be the best reward to all contributors of this book, if their efforts herein may in some way help the readers in any part of their study, research, and career development.
Resumo:
To analyse mechanotransduction resulting from tensile loading under defined conditions, various devices for in vitro cell stimulation have been developed. This work aimed to determine the strain distribution on the membrane of a commercially available device and its consistency with rising cycle numbers, as well as the amount of strain transferred to adherent cells. The strains and their behaviour within the stimulation device were determined using digital image correlation (DIC). The strain transferred to cells was measured on eGFP-transfected bone marrow-derived cells imaged with a fluorescence microscope. The analysis was performed by determining the coordinates of prominent positions on the cells, calculating vectors between the coordinates and their length changes with increasing applied tensile strain. The stimulation device was found to apply homogeneous (mean of standard deviations approx. 2% of mean strain) and reproducible strains in the central well area. However, on average, only half of the applied strain was transferred to the bone marrow-derived cells. Furthermore, the strain measured within the device increased significantly with an increasing number of cycles while the membrane's Young's modulus decreased, indicating permanent changes in the material during extended use. Thus, strain magnitudes do not match the system readout and results require careful interpretation, especially at high cycle numbers.
Resumo:
In vector space based approaches to natural language processing, similarity is commonly measured by taking the angle between two vectors representing words or documents in a semantic space. This is natural from a mathematical point of view, as the angle between unit vectors is, up to constant scaling, the only unitarily invariant metric on the unit sphere. However, similarity judgement tasks reveal that human subjects fail to produce data which satisfies the symmetry and triangle inequality requirements for a metric space. A possible conclusion, reached in particular by Tversky et al., is that some of the most basic assumptions of geometric models are unwarranted in the case of psychological similarity, a result which would impose strong limits on the validity and applicability vector space based (and hence also quantum inspired) approaches to the modelling of cognitive processes. This paper proposes a resolution to this fundamental criticism of of the applicability of vector space models of cognition. We argue that pairs of words imply a context which in turn induces a point of view, allowing a subject to estimate semantic similarity. Context is here introduced as a point of view vector (POVV) and the expected similarity is derived as a measure over the POVV's. Different pairs of words will invoke different contexts and different POVV's. Hence the triangle inequality ceases to be a valid constraint on the angles. We test the proposal on a few triples of words and outline further research.
Resumo:
The use of appropriate features to characterise an output class or object is critical for all classification problems. In order to find optimal feature descriptors for vegetation species classification in a power line corridor monitoring application, this article evaluates the capability of several spectral and texture features. A new idea of spectral–texture feature descriptor is proposed by incorporating spectral vegetation indices in statistical moment features. The proposed method is evaluated against several classic texture feature descriptors. Object-based classification method is used and a support vector machine is employed as the benchmark classifier. Individual tree crowns are first detected and segmented from aerial images and different feature vectors are extracted to represent each tree crown. The experimental results showed that the proposed spectral moment features outperform or can at least compare with the state-of-the-art texture descriptors in terms of classification accuracy. A comprehensive quantitative evaluation using receiver operating characteristic space analysis further demonstrates the strength of the proposed feature descriptors.
Resumo:
One of the nice properties of kernel classifiers such as SVMs is that they often produce sparse solutions. However, the decision functions of these classifiers cannot always be used to estimate the conditional probability of the class label. We investigate the relationship between these two properties and show that these are intimately related: sparseness does not occur when the conditional probabilities can be unambiguously estimated. We consider a family of convex loss functions and derive sharp asymptotic results for the fraction of data that becomes support vectors. This enables us to characterize the exact trade-off between sparseness and the ability to estimate conditional probabilities for these loss functions.
Resumo:
Despite various approaches, the production of biodegradable plastics such as polyhydroxybutyrate (PHB) in transgenic plants has met with limited success due largely to low expression levels. Even in the few instances where high levels of protein expression have been reported, the transgenic plants have been stunted indicating PHB is phytotoxic (Poirier 2002). This PhD describes the application of a novel virus-based gene expression technology, termed InPAct („In Plant Activation.), for the production of PHB in tobacco and sugarcane. InPAct is based on the rolling circle replication mechanism by which circular ssDNA viruses replicate and provides a system for controlled, high-level gene expression. Based on these features, InPAct was thought to represent an ideal system to enable the controlled, high-level expression of the three phb genes (phbA, phbB and phbC) required for PHB production in sugarcane at a preferred stage of plant growth. A Tobacco yellow dwarf virus (TbYDV)-based InPAct-phbA vector, as well as linear vectors constitutively expressing phbB and phbC were constructed and different combinations were used to transform tobacco leaf discs. A total of four, eight, three and three phenotypically normal tobacco lines were generated from discs transformed with InPAct-phbA, InPAct-phbA + p1300-TaBV P-phbB/phbC- 35S T, p1300-35S P-phbA-NOS T + p1300-TaBV P-phbB/phbC-35S T and InPAct-GUS, respectively. To determine whether the InPAct cassette could be activated in the presence of the TbYDV Rep, leaf samples from the eight InPActphbA + p1300-TaBV P-phbB/phbC-35S T plants were agroinfiltrated with p1300- TbYDV-Rep/RepA. Three days later, successful activation was indicated by the detection of episomes using both PCR and Southern analysis. Leaf discs from the eight InPAct-phbA + p1300-TaBV P-phbB/phbC-35S T transgenic plant lines were agroinfiltrated with p1300-TbYDV-Rep/RepA and leaf tissue was collected ten days post-infiltration and examined for the presence of PHB granules. Confocal microscopy and TEM revealed the presence of typical PHB granules in five of the eight lines, thus demonstrating the functionality of InPActbased PHB production in tobacco. However, analysis of leaf extracts by HPLC failed to detect the presence of PHB suggesting only very low level expression levels. Subsequent molecular analysis of three lines revealed low levels of correctly processed mRNA from the catalase intron contained within the InPAct cassette and also the presence of cryptic splice sites within the intron. In an attempt to increase expression levels, new InPAct-phb cassettes were generated in which the castorbean catalase intron was replaced with a synthetic intron (syntron). Further, in an attempt to both increase and better control Rep/RepA-mediated activation of InPAct cassettes, Rep/RepA expression was placed under the control of a stably integrated alc switch. Leaf discs from a transgenic tobacco line (Alc ML) containing 35S P-AlcR-AlcA P-Rep/RepA were supertransformed with InPAct-phbAsyn or InPAct-GUSsyn using Agrobacterium and three plants (lines) were regenerated for each construct. Analysis of the RNA processing of the InPAct-phbAsyn cassette revealed highly efficient and correct splicing of the syntron, thus supporting its inclusion within the InPAct system. To determine the efficiency of the alc switch to activate InPAct, leaf material from the three Alc ML + InPAct-phbAsyn lines was either agroinfiltrated with 35S P-Rep/RepA or treated with ethanol. Unexpectedly, episomes were detected not only in the infiltrated and ethanol treated samples, but also in non-treated samples. Subsequent analysis of transgenic Alc ML + InPAct-GUS lines, confirmed that the alc switch was leaky in tissue culture. Although this was shown to be reversible once plants were removed from the tissue culture environment, it made the regeneration of Alc ML + InPAct-phbsyn plant lines extremely difficult, due to unintentional Rep expression and therefore high levels of phb expression and phytotoxic PHB production. Two Alc ML + InPAct-phbAsyn + p1300-TaBV P-phbB/phbC-35S T transgenic lines were able to be regenerated, and these were acclimatised, alcohol-treated and analysed. Although episome formation was detected as late as 21 days post activation, no PHB was detected in the leaves of any plants using either microscopy or HPLC, suggesting the presence of a corrupt InPAct-phbA cassette in both lines. The final component of this thesis involved the application of both the alc switch and the InPAct systems to sugarcane in an attempt to produce PHB. Initial experiments using transgenic Alc ML + InPAct-GUS lines indicated that the alc system was not functional in sugarcane under the conditions tested. The functionality of the InPAct system, independent of the alc gene switch, was subsequently examined by bombarding the 35S Rep/RepA cassette into leaf and immature leaf whorl cells derived from InPAct-GUS transgenic sugarcane plants. No GUS expression was observed in leaf tissue, whereas weak and irregular GUS expression was observed in immature leaf whorl tissue derived from two InPAct- GUS lines and two InPAct-GUS + 35S P-AlcR-AlcA P-GUS lines. The most plausible reason to explain the inconsistent and low levels of GUS expression in leaf whorls is a combination of low numbers of sugarcane cells in the DNA replication-conducive S-phase and the irregular and random nature of sugarcane cells bombarded with Rep/RepA. This study details the first report to develop a TbYDV-based InPAct system under control of the alc switch to produce PHB in tobacco and sugarcane. Despite the inability to detect quantifiable levels of PHB levels in either tobacco or sugarcane, the findings of this study should nevertheless assist in the further development of both the InPAct system and the alc system, particularly for sugarcane and ultimately lead to an ethanol-inducible InPAct gene expression system for the production of bioplastics and other proteins of commercial value in plants.
Resumo:
With the growth of the Web, E-commerce activities are also becoming popular. Product recommendation is an effective way of marketing a product to potential customers. Based on a user’s previous searches, most recommendation methods employ two dimensional models to find relevant items. Such items are then recommended to a user. Further too many irrelevant recommendations worsen the information overload problem for a user. This happens because such models based on vectors and matrices are unable to find the latent relationships that exist between users and searches. Identifying user behaviour is a complex process, and usually involves comparing searches made by him. In most of the cases traditional vector and matrix based methods are used to find prominent features as searched by a user. In this research we employ tensors to find relevant features as searched by users. Such relevant features are then used for making recommendations. Evaluation on real datasets show the effectiveness of such recommendations over vector and matrix based methods.
Resumo:
Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.
Resumo:
This paper describes the formulation for the free vibration of joined conical-cylindrical shells with uniform thickness using the transfer of influence coefficient for identification of structural characteristics. These characteristics are importance for structural health monitoring to develop model. This method was developed based on successive transmission of dynamic influence coefficients, which were defined as the relationships between the displacement and the force vectors at arbitrary nodal circles of the system. The two edges of the shell having arbitrary boundary conditions are supported by several elastic springs with meridional/axial, circumferential, radial and rotational stiffness, respectively. The governing equations of vibration of a conical shell, including a cylindrical shell, are written as a coupled set of first order differential equations by using the transfer matrix of the shell. Once the transfer matrix of a single component has been determined, the entire structure matrix is obtained by the product of each component matrix and the joining matrix. The natural frequencies and the modes of vibration were calculated numerically for joined conical-cylindrical shells. The validity of the present method is demonstrated through simple numerical examples, and through comparison with the results of previous researchers.