78 resultados para Reflective light microscopy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: Neuropathy is a cause of significant disability in patients with Fabry disease, yet its diagnosis is difficult. In this study we compared the novel noninvasive techniques of corneal confocal microscopy (CCM) to quantify small-fiber pathology, and non-contact corneal esthesiometry (NCCA) to quantify loss of corneal sensation, with established tests of neuropathy in patients with Fabry disease. Ten heterozygous females with Fabry disease not on enzyme replacement therapy (ERT), 6 heterozygous females, 6 hemizygous males on ERT, and 14 age-matched, healthy volunteers underwent detailed quantification of neuropathic symptoms, neurological deficits, neurophysiology, quantitative sensory testing (QST), NCCA, and CCM. All patients with Fabry disease had significant neuropathic symptoms and an elevated Mainz score. Peroneal nerve amplitude was reduced in all patients and vibration perception threshold was elevated in both male and female patients on ERT. Cold sensation (CS) threshold was significantly reduced in both male and female patients on ERT (P < 0.02), but warm sensation (WS)and heat-induced pain (HIP) were only significantly increased in males onERT (P<0.01). However, corneal sensation assessed withNCCAwas significantly reduced in female (P < 0.02) and male (P < 0.04) patients on ERT compared with control subjects. According to CCM, corneal nerve fiber and branch density was significantly reduced in female (P < 0.03) and male (P < 0.02) patients on ERT compared with control subjects. Furthermore, the severity of neuropathic symptoms and the neurological component of the Mainz Severity Score Index correlated significantly with QSTand CCM. This study shows that CCM and NCCA provide a novel means to detect early nerve fiber damage and dysfunction, respectively, in patients with Fabry disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reflective learning is vital for successful practice-led education such as animation, multimedia design and graphic design, and social network sites can accommodate various learning styles for effective reflective learning. In this paper, the researcher studies reflective learning through social network sites with two animation units. These units aim to provide students with an understanding of the tasks and workflows involved in the production of style sheets, character sheets and motion graphics for use in 3D productions for film and television and game design. In particular, an assessment in these units requires students to complete their online reflective journals throughout the semester. The reflective learning has been integrated within the unit design and students are encouraged to reflect weekly learning processes and outcomes. A survey evaluating for students’ learning experience was conducted, and its outcomes indicate that social network site based reflective learning will not be effective without considering students’ learning circumstances and designing peer-to-peer interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses about effectiveness of blogs for reflective learning in design education. Students in two animation units were asked to complete their online journal via blog in terms of reflective learning. Students were encouraged to respond their weekly outcomes and project development process to their blog and share it with other students. A survey was undertaken to evaluate their learning experience and one of the key outcomes indicates that interaction design for social network is significantly important to blog based learning design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although placing reflective markers on pedestrians’ major joints can make pedestrians more conspicuous to drivers at night, it has been suggested that this “biological motion” effect may be reduced when visual clutter is present. We tested whether extraneous points of light affected the ability of 12 younger and 12 older drivers to see pedestrians as they drove on a closed road at night. Pedestrians wore black clothing alone or with retroreflective markings in four different configurations. One pedestrian walked in place and was surrounded by clutter on half of the trials. Another was always surrounded by visual clutter but either walked in place or stood still. Clothing configuration, pedestrian motion, and driver age influenced conspicuity but clutter did not. The results confirm that even in the presence of visual clutter pedestrians wearing biological motion configurations are recognized more often and at greater distances than when they wear a reflective vest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent times, light gauge cold-formed steel sections have been used extensively as primary load bearing structural members in many applications in the building industry. Fire safety design of structures using such sections has therefore become more important. Deterioration of mechanical properties of yield stress and elasticity modulus is considered the most important factor affecting the performance of steel structures in fires. Hence there is a need to fully understand the mechanical properties of light gauge cold-formed steels at elevated temperatures. A research project based on experimental studies was therefore undertaken to investigate the deterioration of mechanical properties of light gauge cold-formed steels. Tensile coupon tests were undertaken to determine the mechanical properties of these steels made of both low and high strength steels and thicknesses of 0.60, 0.80 and 0.95 mm at temperatures ranging from 20 to 800ºC. Test results showed that the currently available reduction factors are unsafe to use in the fire safety design of cold-formed steel structures. Therefore new predictive equations were developed for the mechanical properties of yield strength and elasticity modulus at elevated temperatures. This paper presents the details of the experimental study, and the results including the developed equations. It also includes details of a stress-strain model for light gauge cold-formed steels at elevated temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aggregate structure which occurs in aqueous smectitic suspensions is responsible for poor water clarification, difficulties in sludge dewatering and the unusual rheological behaviour of smectite rich soils. These macroscopic properties are dictated by the 3-D structural arrangement of smectite finest fraction within flocculated aggregates. Here, we report results from a relatively new technique, Transmission X-ray Microscopy (TXM), which makes it possible to investigate the internal structure and 3-D tomographic reconstruction of the smectite clay aggregates modified by Al13 keggin macro-molecule [Al13(O)4(OH)24(H2O)12 ]7+. Three different treatment methods were shown resulted in three different micro-structural environments of the resulting flocculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

‘Practice makes perfect’ expresses the common misconception that repetitive practice without appropriate feed-back will deliver improvement in tasks being practised. This paper explores the implementation of a student-driven feed-back mechanism and shows how functional and aesthetic understanding can be progressively enhanced through reflective practice. More efficient practice of clearly understood tasks will enhance dance training outcomes. We were looking for ways to improve teaching efficiency, effectiveness of the students’ practice in the studio and application of safe dance practices. We devised a web-based on-line format, ‘Performing Reflective Practice’, designed to augment and refine studio practice. Only perfect practice makes perfect!

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire design is an essential element of the overall design procedure of structural steel members and systems. Conventionally the fire rating of load-bearing stud wall systems made of light gauge steel frames (LSF) is based on approximate prescriptive methods developed on the basis of limited fire tests. This design is limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to the stud walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these light gauge steel stud wall systems. Hence a detailed fire research study into the performance and effectiveness of a recently developed innovative composite panel wall system was undertaken at Queensland University of Technology using both full scale fire tests and numerical studies. Experimental results of LSF walls using the new composite panels under axial compression load have shown the improvement in fire performance and fire resistance rating. Numerical analyses are currently being undertaken using the finite element program ABAQUS. Measured temperature profiles of the studs are used in the numerical models and the results are used to calibrate against full scale test results. The validated model will be used in a detailed parametric study with an aim to develop suitable design rules within the current cold-formed steel structures and fire design standards. This paper will present the results of experimental and numerical investigations into the structural and fire behaviour of light gauge steel stud walls protected by the new composite panel. It will demonstrate the improvements provided by the new composite panel system in comparison to traditional wall systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The investigation into the encapsulation of gold nanoparticles (AuNPs) by poly(methyl methacrylate) (PMMA) was undertaken. This was performed by three polymerisation techniques including: grafting PMMA synthesised by reversible addition-fragmentation chain transfer (RAFT) polymerisation to AuNPs, grafting PMMA synthesised by atom transfer radical polymerisation (ATRP) from the surface of functionalised AuNPs and by encapsulation of AuNPs within PMMA latexes produced through photo-initiated oil-in-water (o/w) miniemulsion polymerisation. The grafting of RAFT PMMA to AuNPs was performed by the addition of the RAFT functionalised PMMA to citrate stabilised AuNPs. This was conducted with a range of PMMA of varying molecular weight distribution (MWD) as either the dithioester or thiol end-group functionalities. The RAFT PMMA polymers were characterised by gel permeation chromatography (GPC), ultraviolet-visible (UV-vis), Fourier transform infrared-attenuated total reflectance (FTIR-ATR), Fourier transform Raman (FT-Raman) and proton nuclear magnetic resonance (1H NMR) spectroscopies. The attachment of PMMA to AuNPs showed a tendency for AuNPs to associate with the PMMA structures formed, though significant aggregation occurred. Interestingly, thiol functionalised end-group PMMA showed very little aggregation of AuNPs. The spherical polymer-AuNP structures did not vary in size with variations in PMMA MWD. The PMMA-AuNP structures were characterised using scanning electron microscopy (SEM), transition electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and UV-vis spectroscopy. The surface confined ATRP grafting of PMMA from initiator functionalised AuNPs was polymerised in both homogeneous and heterogeneous media. 11,11’- dithiobis[1-(2-bromo-2-methylpropionyloxy)undecane] (DSBr) was used as the surface-confined initiator and was synthesised in a three step procedure from mercaptoundecanol (MUD). All compounds were characterised by 1H NMR, FTIR-ATR and Raman spectroscopies. The grafting in homogeneous media resulted in amorphous PMMA with significant AuNP aggregation. Individually grafted AuNPs were difficult to separate and characterise, though SEM, TEM, EDAX and UV-vis spectroscopy was used. The heterogeneous polymerisation did not produce grafted AuNPs as characterised by SEM and EDAX. The encapsulation of AuNPs within PMMA latexes through the process of photoinitiated miniemulsion polymerisation was successfully achieved. Initially, photoinitiated miniemulsion polymerisation was conducted as a viable low temperature method of miniemulsion initiation. This proved successful producing a stable PMMA with good conversion efficiency and narrow particle size distribution (PSD). This is the first report of such a system. The photo-initiated technique was further optimised and AuNPs were included into the miniemulsion. AuNP encapsulation was very effective, producing reproducible AuNP encapsulated PMMA latexes. Again, this is the first reported case of this. The latexes were characterised by TEM, SEM, GPC, gravimetric analysis and dynamic light scattering (DLS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Light of Gairdner is a key work of the author's exhibition Lightsite, which toured Western Australian galleries from February 2006 to November 2007. It is a five-minute-long exposure photographic image captured inside a purpose-built, room-sized pinhole camera which is demountable and does not have a floor. The Light of Gairdner depicts two brothers Allan and Harvey Lynch during their barley harvest. Allan is standing outside the pinhole camera-room in the barley field. The light from this exterior landscape is 'projected' inside the camera-room and illuminates the interior scene which includes that part of the barley field upon which the floorless room is erected, along with Harvey who is standing inside. The image evokes the temporality of light. Here, light itself is portrayed as the primary medium through which we both perceive and describe landscape. It is through the agency of light that we construct our connectivity to landscape. The exhibition/catalogue statement. "Harvey and Allan Lynch lost their father Frank, in a crop dusting crash five years ago. They now manage their dad's 6000 acre farm and are photographed here at the time of their barley harvest."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Light of Gairdner 2 is a key work of the author's exhibition Lightsite, which toured Western Australian galleries from February 2006 to November 2007. It is a five-minute-long exposure photographic image captured inside a purpose-built, room-sized pinhole camera which is demountable and does not have a floor. The Light of Gairdner 2 depicts two brothers Allan and Harvey Lynch during their barley harvest. Allan is standing outside the pinhole camera-room in the barley field with their new 'CASE' harvester. The light from this exterior landscape is 'projected' inside the camera-room and illuminates the interior scene which includes that part of the barley field upon which the floorless room is erected, along with Harvey who is standing inside. The image evokes the temporality of light. Here, light itself is portrayed as the primary medium through which we both perceive and describe landscape. In this way it is through the agency of light that we construct our connectivity to landscape. The exhibition/catalogue statement. "Harvey and Allan Lynch lost their father Frank, in a crop dusting crash five years ago. They now manage their dad's 6000 acre farm and are photographed here at the time of their barley harvest. The Light of Gairdner 2 features their new 'CASE' harvester, and in the distance, the grain silos of Gairdner."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel members can be assembled in various combinations to provide cost-efficient and safe light gauge floor systems for buildings. Such Light gauge Steel Framing (LSF) systems are widely accepted in industrial and commercial building construction. An example application is in floor-ceiling systems. Light gauge steel floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire-rated floor-ceiling assemblies formed with new materials and construction methodologies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite floor-ceiling system has been developed to provide higher fire rating under standard fire conditions. But its increased fire rating could not be determined using the currently available design methods. Therefore a research project was carried out to investigate its structural and fire resistance behaviour under standard fire conditions. In this research project full scale experimental tests of the new LSF floor system based on a composite ceiling unit were undertaken using a gas furnace at the Queensland University of Technology. Both the conventional and the new steel floor-ceiling systems were tested under structural and fire loads. Full scale fire tests provided a good understanding of the fire behaviour of the LSF floor-ceiling systems and confirmed the superior performance of the new composite system. This paper presents the details of this research into the structural and fire behaviour of light gauge steel floor systems protected by the new composite panel, and the results.