71 resultados para Real Root Isolation Methods
Resumo:
Optimisation is a fundamental step in the turbine design process, especially in the development of non-classical designs of radial-inflow turbines working with high-density fluids in low-temperature Organic Rankine Cycles (ORCs). The present work discusses the simultaneous optimisation of the thermodynamic cycle and the one-dimensional design of radial-inflow turbines. In particular, the work describes the integration between a 1D meanline preliminary design code adapted to real gases and the performance estimation approach for radial-inflow turbines in an established ORC cycle analysis procedure. The optimisation approach is split in two distinct loops; the inner operates on the 1D design based on the parameters received from the outer loop, which optimises the thermodynamic cycle. The method uses parameters including brine flow rate, temperature and working fluid, shifting assumptions such as head and flow coefficients into the optimisation routine. The discussed design and optimisation method is then validated against published benchmark cases. Finally, using the same conditions, the coupled optimisation procedure is extended to the preliminary design of a radial-inflow turbine with R143a as working fluid in realistic geothermal conditions and compared against results from commercially-available software RITAL from Concepts-NREC.
Resumo:
This thesis addresses the topic of real-time decision making by driverless (autonomous) city vehicles, i.e. their ability to make appropriate driving decisions in non-simplified urban traffic conditions. After addressing the state of research, and explaining the research question, the thesis presents solutions for the subcomponents which are relevant for decision making with respect to information input (World Model), information output (Driving Maneuvers), and the real-time decision making process. TheWorld Model is a software component developed to fulfill the purpose of collecting information from perception and communication subsystems, maintaining an up-to-date view of the vehicle’s environment, and providing the required input information to the Real-Time Decision Making subsystem in a well-defined, and structured way. The real-time decision making process consists of two consecutive stages. While the first decision making stage uses a Petri net to model the safetycritical selection of feasible driving maneuvers, the second stage uses Multiple Criteria Decision Making (MCDM) methods to select the most appropriate driving maneuver, focusing on fulfilling objectives related to efficiency and comfort. The complex task of autonomous driving is subdivided into subtasks, called driving maneuvers, which represent the output (i.e. decision alternatives) of the real-time decision making process. Driving maneuvers are considered as implementations of closed-loop control algorithms, each capable of maneuvering the autonomous vehicle in a specific traffic situation. Experimental tests in both a 3D simulation and real-world experiments attest that the developed approach is suitable to deal with the complexity of real-world urban traffic situations.
Resumo:
Background Menstrual effluent affects mesothelial cell (MC) morphology. We evaluated whether these changes were consistent with epithelial-mesenchymal transitions (EMT). Methods Monolayer cultures of MC were incubated overnight in conditioned media, prepared from cells isolated form menstrual effluent, with or without kinase and ATP inhibitors. Changes in cell morphology were monitored using time-lapse video microscopy and immunohistochemistry. Effects on the expression of EMT-associated molecules were evaluated using real-time RT-PCR and/or Western blot analysis. Results Incubation in conditioned media disrupted cell-cell contacts, and increased MC motility. The changes were reversible. During the changes the distribution of cytokeratins, fibrillar actin and α-tubulin changed. Sodium azide, an inhibitor of ATP production, and Genistein, a general tyrosine kinase inhibitor, antagonized these effects. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, and SU6656, an Src tyrosine kinase inhibitor, only partially antagonized the effect. The expression of Snail and vimentin was markedly up-regulated, whereas the expression of E-cadherin was decreased and cytokeratins were altered. Conclusions In MC, menstrual effluent initiates a reversible, energy-dependent transition process from an epithelial to a mesenchymal phenotype. Involvement of the (Src) tyrosine kinase signalling pathway and the changes in the expression of cytokeratins, Snail, vimentin and E-cadherin demonstrate that the morphological changes are EMT.
Resumo:
Ascidians are marine invertebrates that have been a source of numerous cytotoxic compounds. Of the first six marine-derived drugs that made anticancer clinical trials, three originated from ascidian specimens. In order to identify new anti-neoplastic compounds, an ascidian extract library (143 samples) was generated and screened in MDA-MB-231 breast cancer cells using a real-time cell analyzer (RTCA). This resulted in 143 time-dependent cell response profiles (TCRP), which are read-outs of changes to the growth rate, morphology, and adhesive characteristics of the cell culture. Twenty-one extracts affected the TCRP of MDA-MB-231 cells and were further investigated regarding toxicity and specificity, as well as their effects on cell morphology and cell cycle. The results of these studies were used to prioritize extracts for bioassay-guided fractionation, which led to the isolation of the previously identified marine natural product, eusynstyelamide B (1). This bis-indole alkaloid was shown to display an IC50 of 5 μM in MDA-MB-231 cells. Moreover, 1 caused a strong cell cycle arrest in G2/M and induced apoptosis after 72 h treatment, making this molecule an attractive candidate for further mechanism of action studies.
Resumo:
Engineering students are best able to understand theory when one explains it in relation to realistic problems and its practical applications. Teaching theory in isolation has led to lower levels of comprehension and motivation and a correspondingly higher rate of failure. At Queensland University of Technology, a number of new methods have been introduced recently to improve the teaching and learning of steel structural design at undergradt1ate level. In the basic steel structures subject a project-based teaching method was introduced in which the students were required to analyse, design and build the lightest I most efficient steel columns for a given target capacity. A design assignment involving simple, but real structures was also introduced in the basic steel structures subject. Both these exercises simulated realistic engineering problems from the early years of the course and produced a range of benefits. Improvements to the teaching and learning was also made through integration of a number of related structural engineering subjects and by the introduction of animated computer models and laboratory models. This paper presents the details of all these innovative methods which improved greatly the students' understanding of the steel structures design process.
Resumo:
This thesis develops a novel approach to robot control that learns to account for a robot's dynamic complexities while executing various control tasks using inspiration from biological sensorimotor control and machine learning. A robot that can learn its own control system can account for complex situations and adapt to changes in control conditions to maximise its performance and reliability in the real world. This research has developed two novel learning methods, with the aim of solving issues with learning control of non-rigid robots that incorporate additional dynamic complexities. The new learning control system was evaluated on a real three degree-of-freedom elastic joint robot arm with a number of experiments: initially validating the learning method and testing its ability to generalise to new tasks, then evaluating the system during a learning control task requiring continuous online model adaptation.
Resumo:
Stochastic modelling is critical in GNSS data processing. Currently, GNSS data processing commonly relies on the empirical stochastic model which may not reflect the actual data quality or noise characteristics. This paper examines the real-time GNSS observation noise estimation methods enabling to determine the observation variance from single receiver data stream. The methods involve three steps: forming linear combination, handling the ionosphere and ambiguity bias and variance estimation. Two distinguished ways are applied to overcome the ionosphere and ambiguity biases, known as the time differenced method and polynomial prediction method respectively. The real time variance estimation methods are compared with the zero-baseline and short-baseline methods. The proposed method only requires single receiver observation, thus applicable to both differenced and un-differenced data processing modes. However, the methods may be subject to the normal ionosphere conditions and low autocorrelation GNSS receivers. Experimental results also indicate the proposed method can result on more realistic parameter precision.
Resumo:
The development of methods for real-time crash prediction as a function of current or recent traffic and roadway conditions is gaining increasing attention in the literature. Numerous studies have modeled the relationships between traffic characteristics and crash occurrence, and significant progress has been made. Given the accumulated evidence on this topic and the lack of an articulate summary of research status, challenges, and opportunities, there is an urgent need to scientifically review these studies and to synthesize the existing state-of-the-art knowledge. This paper addresses this need by undertaking a systematic literature review to identify current knowledge, challenges, and opportunities, and then conducts a meta-analysis of existing studies to provide a summary impact of traffic characteristics on crash occurrence. Sensitivity analyses were conducted to assess quality, publication bias, and outlier bias of the various studies; and the time intervals used to measure traffic characteristics were also considered. As a result of this comprehensive and systematic review, issues in study designs, traffic and crash data, and model development and validation are discussed. Outcomes of this study are intended to provide researchers focused on real-time crash prediction with greater insight into the modeling of this important but extremely challenging safety issue.
Size-resolved particle distribution and gaseous concentrations by real-world road tunnel measurement
Resumo:
Measurements of aerosol particle number size distributions (15-700 nm), CO and NOx were performed in a bus tunnel, Australia. Daily mean particle size distributions of mixed diesel/CNG (Compressed Natural Gas) buses traffic flow were determined in 4 consecutive measurement days. EFs (Emission Factors) of Particle size distribution of diesel buses and CNG buses were obtained by MLR (Multiple Linear Regression) methods, particle distributions of diesel buses and CNG buses were observed as single accumulation mode and nuclei-mode separately. Particle size distributions of mixed traffic flow were decomposed by two log-normal fitting curves for each 30 minutes interval mean scans, all the mix fleet PSD emission can be well fitted by the summation of two log-normal distribution curves, and these were composed of nuclei mode curve and accumulation curve, which were affirmed as the CNG buses and diesel buses PN emission curves respectively. Finally, particle size distributions of diesel buses and CNG buses were quantified by statistical whisker-box charts. For log-normal particle size distribution of diesel buses, accumulation mode diameters were 74.5~87.5nm, geometric standard deviations were 1.89~1.98. As to log-normal particle size distribution of CNG buses, nuclei-mode diameters were 21~24 nm, geometric standard deviations were 1.27~1.31.
Resumo:
For design-build (DB) projects, owners normally use lump sum and Guaranteed Maximum Price (GMP) as the major contract payment provisions. However, there was a lack of empirical studies to compare the project performance within different contract types and investigate how different project characteristics affect the owners’ selection of contract arrangement. Project information from Design-build Institute of America (DBIA) database was collected to reveal the statistical relationship between different project characteristics and contract types and to compare project performance between lump sum and GMP contract. The results show that lump sum is still the most frequently used contract method for DB projects, especially in the public sector. However, projects using GMP contract are more likely to have less schedule delay and cost overrun as compared to those with lump sum contract. The chi-square tests of cross tabulations reveal that project type, owner type, and procurement method affect the selection of contract types significantly. Civil infrastructure rather than industrial engineering project tends to use lump sum more frequently; and qualification-oriented contractor selection process resorts to GMP more often compared with cost-oriented process. The findings of this research contribute to the current body of knowledge concerning the effect of associated project characteristics on contract type selection. Overall, the results of this study provide empirical evidence from real DB projects that can be used by owners to select appropriate contract types and eventually improve future project performance.
Resumo:
This thesis introduces a new way of using prior information in a spatial model and develops scalable algorithms for fitting this model to large imaging datasets. These methods are employed for image-guided radiation therapy and satellite based classification of land use and water quality. This study has utilized a pre-computation step to achieve a hundredfold improvement in the elapsed runtime for model fitting. This makes it much more feasible to apply these models to real-world problems, and enables full Bayesian inference for images with a million or more pixels.
Resumo:
In recent years, rapid advances in information technology have led to various data collection systems which are enriching the sources of empirical data for use in transport systems. Currently, traffic data are collected through various sensors including loop detectors, probe vehicles, cell-phones, Bluetooth, video cameras, remote sensing and public transport smart cards. It has been argued that combining the complementary information from multiple sources will generally result in better accuracy, increased robustness and reduced ambiguity. Despite the fact that there have been substantial advances in data assimilation techniques to reconstruct and predict the traffic state from multiple data sources, such methods are generally data-driven and do not fully utilize the power of traffic models. Furthermore, the existing methods are still limited to freeway networks and are not yet applicable in the urban context due to the enhanced complexity of the flow behavior. The main traffic phenomena on urban links are generally caused by the boundary conditions at intersections, un-signalized or signalized, at which the switching of the traffic lights and the turning maneuvers of the road users lead to shock-wave phenomena that propagate upstream of the intersections. This paper develops a new model-based methodology to build up a real-time traffic prediction model for arterial corridors using data from multiple sources, particularly from loop detectors and partial observations from Bluetooth and GPS devices.
Resumo:
This paper presents the results of a research project aimed at examining the capabilities and challenges of two distinct but not mutually exclusive approaches to in-service bridge assessment: visual inspection and installed monitoring systems. In this study, the intended functionality of both approaches was evaluated on its ability to identify potential structural damage and to provide decision-making support. Inspection and monitoring are compared in terms of their functional performance, cost, and barriers (real and perceived) to implementation. Both methods have strengths and weaknesses across the metrics analyzed, and it is likely that a hybrid evaluation technique that adopts both approaches will optimize efficiency of condition assessment and ultimately lead to better decision making.
Resumo:
This study is an evaluation of design students’ perceptions of the benefits of collective learning in a real-world collaborative design studio. Third year students worked in inter-disciplinary teams representing architecture, interior design, landscape architecture, and industrial design. Responding to a real-world brief and in consultation with an industry partner client and early childhood education pre-service teachers, the teams were required to collectively propose a design response for a community-based child and family centre, on an iconic koala sanctuary site. Data were collected using several methods including a participatory action research method, through the form of a large analogue, collaborative jigsaw puzzle. Using a grounded theory methodology, qualitative data were thematically analysed to reveal six distinct aspects of collaboration, which positively impacted the students’ learning experience. The results of this study include recommendations for improving real world collaboration in the design studio in preparation for students’ transition into professional practice.
Resumo:
A global framework for linear stability analyses of traffic models, based on the dispersion relation root locus method, is presented and is applied taking the example of a broad class of car-following (CF) models. This approach is able to analyse all aspects of the dynamics: long waves and short wave behaviours, phase velocities and stability features. The methodology is applied to investigate the potential benefits of connected vehicles, i.e. V2V communication enabling a vehicle to send and receive information to and from surrounding vehicles. We choose to focus on the design of the coefficients of cooperation which weights the information from downstream vehicles. The coefficients tuning is performed and different ways of implementing an efficient cooperative strategy are discussed. Hence, this paper brings design methods in order to obtain robust stability of traffic models, with application on cooperative CF models