290 resultados para QUADRATIC CONFIGURATION-INTERACTION
Resumo:
The field was the design of cross-cultural media art exhibition outcomes for the Japanese marketplace. The context was improved understandings of spatial, temporal and contextual exhibition design procedures as they ultimately impact upon the augmentation of cross-cultural understanding. The research investigated cross-cultural new media exhibition practices suited to the specific sensitivies of Japanese exhibition practices. The methodology was principally practice-led. The research drew upon seven years of prior exhibition design practices in order to generate new Japanese exhibition design methodologies. It also empowered Zaim Artpsace’s Japanese curators to later present a range of substantial new media shows. The project also succeeded in developing new cross-cultural alliances that led to significant IDA projects in Beijing, Australia and Europe in the years 2008-10. Through invitations from external curators the new versions of the exhibition work subsequently travelled to 4 other major venues including the prestigious Songzhang Art Museum, Beijing in 07/08, the Block, QUT, Brisbane and the Tokyo International Film festival. Inspiration Art Press printed a major catalogue for the event extensively featuring this exhibition. This project also led to the Sudamalis (2007) paper, ‘Building Capacity: Literacy And Creative Workforce Development Through International Digital Arts Projects’ (IDAprojects) Exhibition Programs And Partnerships’.
Resumo:
The Queensland University of Technology (QUT) allows the presentation of theses for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of ten published /submitted papers and book chapters of which nine have been published and one is under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of investigating multilevel topologies for high quality and high power applications, with specific emphasis on renewable energy systems. The rapid evolution of renewable energy within the last several years has resulted in the design of efficient power converters suitable for medium and high-power applications such as wind turbine and photovoltaic (PV) systems. Today, the industrial trend is moving away from heavy and bulky passive components to power converter systems that use more and more semiconductor elements controlled by powerful processor systems. However, it is hard to connect the traditional converters to the high and medium voltage grids, as a single power switch cannot stand at high voltage. For these reasons, a new family of multilevel inverters has appeared as a solution for working with higher voltage levels. Besides this important feature, multilevel converters have the capability to generate stepped waveforms. Consequently, in comparison with conventional two-level inverters, they present lower switching losses, lower voltage stress across loads, lower electromagnetic interference (EMI) and higher quality output waveforms. These properties enable the connection of renewable energy sources directly to the grid without using expensive, bulky, heavy line transformers. Additionally, they minimize the size of the passive filter and increase the durability of electrical devices. However, multilevel converters have only been utilised in very particular applications, mainly due to the structural limitations, high cost and complexity of the multilevel converter system and control. New developments in the fields of power semiconductor switches and processors will favor the multilevel converters for many other fields of application. The main application for the multilevel converter presented in this work is the front-end power converter in renewable energy systems. Diode-clamped and cascade converters are the most common type of multilevel converters widely used in different renewable energy system applications. However, some drawbacks – such as capacitor voltage imbalance, number of components, and complexity of the control system – still exist, and these are investigated in the framework of this thesis. Various simulations using software simulation tools are undertaken and are used to study different cases. The feasibility of the developments is underlined with a series of experimental results. This thesis is divided into two main sections. The first section focuses on solving the capacitor voltage imbalance for a wide range of applications, and on decreasing the complexity of the control strategy on the inverter side. The idea of using sharing switches at the output structure of the DC-DC front-end converters is proposed to balance the series DC link capacitors. A new family of multioutput DC-DC converters is proposed for renewable energy systems connected to the DC link voltage of diode-clamped converters. The main objective of this type of converter is the sharing of the total output voltage into several series voltage levels using sharing switches. This solves the problems associated with capacitor voltage imbalance in diode-clamped multilevel converters. These converters adjust the variable and unregulated DC voltage generated by renewable energy systems (such as PV) to the desirable series multiple voltage levels at the inverter DC side. A multi-output boost (MOB) converter, with one inductor and series output voltage, is presented. This converter is suitable for renewable energy systems based on diode-clamped converters because it boosts the low output voltage and provides the series capacitor at the output side. A simple control strategy using cross voltage control with internal current loop is presented to obtain the desired voltage levels at the output voltage. The proposed topology and control strategy are validated by simulation and hardware results. Using the idea of voltage sharing switches, the circuit structure of different topologies of multi-output DC-DC converters – or multi-output voltage sharing (MOVS) converters – have been proposed. In order to verify the feasibility of this topology and its application, steady state and dynamic analyses have been carried out. Simulation and experiments using the proposed control strategy have verified the mathematical analysis. The second part of this thesis addresses the second problem of multilevel converters: the need to improve their quality with minimum cost and complexity. This is related to utilising asymmetrical multilevel topologies instead of conventional multilevel converters; this can increase the quality of output waveforms with a minimum number of components. It also allows for a reduction in the cost and complexity of systems while maintaining the same output quality, or for an increase in the quality while maintaining the same cost and complexity. Therefore, the asymmetrical configuration for two common types of multilevel converters – diode-clamped and cascade converters – is investigated. Also, as well as addressing the maximisation of the output voltage resolution, some technical issues – such as adjacent switching vectors – should be taken into account in asymmetrical multilevel configurations to keep the total harmonic distortion (THD) and switching losses to a minimum. Thus, the asymmetrical diode-clamped converter is proposed. An appropriate asymmetrical DC link arrangement is presented for four-level diode-clamped converters by keeping adjacent switching vectors. In this way, five-level inverter performance is achieved for the same level of complexity of the four-level inverter. Dealing with the capacitor voltage imbalance problem in asymmetrical diodeclamped converters has inspired the proposal for two different DC-DC topologies with a suitable control strategy. A Triple-Output Boost (TOB) converter and a Boost 3-Output Voltage Sharing (Boost-3OVS) converter connected to the four-level diode-clamped converter are proposed to arrange the proposed asymmetrical DC link for the high modulation indices and unity power factor. Cascade converters have shown their abilities and strengths in medium and high power applications. Using asymmetrical H-bridge inverters, more voltage levels can be generated in output voltage with the same number of components as the symmetrical converters. The concept of cascading multilevel H-bridge cells is used to propose a fifteen-level cascade inverter using a four-level H-bridge symmetrical diode-clamped converter, cascaded with classical two-level Hbridge inverters. A DC voltage ratio of cells is presented to obtain maximum voltage levels on output voltage, with adjacent switching vectors between all possible voltage levels; this can minimize the switching losses. This structure can save five isolated DC sources and twelve switches in comparison to conventional cascade converters with series two-level H bridge inverters. To increase the quality in presented hybrid topology with minimum number of components, a new cascade inverter is verified by cascading an asymmetrical four-level H-bridge diode-clamped inverter. An inverter with nineteen-level performance was achieved. This synthesizes more voltage levels with lower voltage and current THD, rather than using a symmetrical diode-clamped inverter with the same configuration and equivalent number of power components. Two different predictive current control methods for the switching states selection are proposed to minimise either losses or THD of voltage in hybrid converters. High voltage spikes at switching time in experimental results and investigation of a diode-clamped inverter structure raised another problem associated with high-level high voltage multilevel converters. Power switching components with fast switching, combined with hard switched-converters, produce high di/dt during turn off time. Thus, stray inductance of interconnections becomes an important issue and raises overvoltage and EMI issues correlated to the number of components. Planar busbar is a good candidate to reduce interconnection inductance in high power inverters compared with cables. The effect of different transient current loops on busbar physical structure of the high-voltage highlevel diode-clamped converters is highlighted. Design considerations of proper planar busbar are also presented to optimise the overall design of diode-clamped converters.
Resumo:
A telehealth stethoscope would make it possible for doctors to perform physical examinations on patients at great distances. In order to develop a useful and usable telehealth stethoscope we have conducted fieldwork observations of existing anaesthetic preadmission clinics to understand how stethoscopes are currently used. Both face-to-face consultations and videoconference consultations have been studied. Our results indicate that the stethoscope plays a minor role in the consultation and that consultations are mediated by the administrative work that is the reason for the consultation. We suggest that a stethoscope plays an infrastructural role in the consultation. The implications of considering stethoscopes as infrastructure are explored and considered in the context of a future telehealth stethoscope.
Resumo:
The Pedestrian Interaction Patch Project (PIPP) seeks to exert influence over and encourage abnormal pedestrian behavior. By placing an unadvertised (and non recording) interactive video manipulation system and projection source in a high traffic public area, the PIPP allows pedestrians to privately (and publically) re-engage with a previously inactive physical environment, like a commonly used walkway or corridor. This system, the results of which are projected in real time on the architectural surface, inadvertently provides pedestrians with questions around preconceived notions of self and space. In an attempt to re-activate our relationship with the physical surrounds we occupy each day the PIPP creates a new set of memories to be recalled as we re-enter known environments once PIPP has moved on and as such re-enlivens our relationship with the everyday architecture we stroll past everyday. The PIPP environment is controlled using the software program Isadora, devised by Mark Coniglio at Troika Ranch, and contains a series of video manipulation patches that are designed to not only grab the pedestrians attention but to also encourage a sense of play and interaction between the architecture, the digital environment, the initially unsuspecting participant(s) and the pedestrian audience. The PIPP was included as part of the planned walking tour for the “Playing in Urban Spaces” seminar day, and was an installation that ran for the length of the symposium in a reclaimed pedestrian space that was encountered by both the participants and general public during the course of the day long event. Ideally once discovered PIPP encouraged pedestrians to return through the course of the seminar day to see if the environmental patches had changed or altered, and changed their standard route to include the PIPP installation or to avoid it, either way, encouraging an active response to the pathways normally traveled or newly discovered each day.
Resumo:
Reliability and validity in the testing of spoken language are essential in order to assess learners' English language proficiency as evidence of their readiness to begin courses in tertiary institutions. Research has indicated that the task chosen to elicit language samples can have a marked effect on both the nature of the interaction, including the power differential, and assessment, raising the issue of ethics. This exploratory studey, with a group of 32 students from the Peoples's Republic of China preparing for tertiary study in Singapore, compares test-takers' reactions to the use of an oral proficiency interview and a pair interaction.
Interaction between disinhibition and restraint: Implications for body weight and eating disturbance
Resumo:
An increase in obesity is usually accompanied by an increase in eating disturbances. Susceptibility to these states may arise from different combinations of underlying traits: Three Factor Eating Questionnaire (TFEQ) Restraint and Disinhibition. Two studies were conducted to examine the interaction between these traits; one on-line study (n=351) and one laboratory-based study (n=120). Participants completed a battery of questionnaires and provided self-report measures of body weight and physical activity. A combination of high Disinhibition and high Restraint was associated with a problematic eating behaviour profile (EAT-26), and a higher rate of smoking and alcohol consumption. A combination of high Disinhibition and low Restraint was associated with a higher susceptibility to weight gain and a higher sedentary behaviour. These data show that different combinations of Disinhibition and Restraint are associated with distinct weight and behaviour outcomes.