310 resultados para Pressure films
Resumo:
This thesis presents a study of the mechanical properties of thin films. The main aim was to determine the properties of sol-gel derived coatings. These films are used in a range of different applications and are known to be quite porous. Very little work has been carried out in this area and in order to study the mechanical properties of sol-gel films, some of the work was carried out on magnetron sputtered metal coatings in order to validate the techniques developed in this work. The main part of the work has concentrated on the development of various bending techniques to study the elastic modulus of the thin films, including both a small scale three-point bending, as well as a novel bi-axial bending technique based on a disk resting on three supporting balls. The bending techniques involve a load being applied to the sample being tested and the bending response to this force being recorded. These experiments were carried out using an ultra micro indentation system with very sensitive force and depth recording capabilities. By analysing the result of these forces and deflections using existing theories of elasticity, the elastic modulus may be determined. In addition to the bi-axial bending study, a finite element analysis of the stress distribution in a disk during bending was carried out. The results from the bi-axial bending tests of the magnetron sputtered films was confirmed by ultra micro indentation tests, giving information of the hardness and elastic modulus of the films. It was found that while the three point bending method gave acceptable results for uncoated steel substrates, it was very susceptible to slight deformations of the substrate. Improvements were made by more careful preparation of the substrates in order to avoid deformation. However the technique still failed to give reasonable results for coated specimens. In contrast, biaxial bending gave very reliable results even for very thin films and this technique was also found to be useful for determination of the properties of sol-gel coatings. In addition, an ultra micro indentation study of the hardness and elastic modulus of sol-gel films was conducted. This study included conventionally fired films as well as films ion implanted in a range of doses. The indentation tests showed that for implantation of H+ ions at doses exceeding 3x1016 ions/cm2, the mechanical properties closely resembled those of films that were conventionally fired to 450°C.
Resumo:
A statistical modeling method to accurately determine combustion chamber resonance is proposed and demonstrated. This method utilises Markov-chain Monte Carlo (MCMC) through the use of the Metropolis-Hastings (MH) algorithm to yield a probability density function for the combustion chamber frequency and find the best estimate of the resonant frequency, along with uncertainty. The accurate determination of combustion chamber resonance is then used to investigate various engine phenomena, with appropriate uncertainty, for a range of engine cycles. It is shown that, when operating on various ethanol/diesel fuel combinations, a 20% substitution yields the least amount of inter-cycle variability, in relation to combustion chamber resonance.
Resumo:
A one-dimensional pressure filtration model that can be used to predict the behaviour of bagasse pulp has been developed and verified in this study.The dynamic filtration model uses steady state compressibility parameters determined experimentally by uniaxial loading. The compressibility parameters M and N for depithed bagasse pulp were determined to be in the ranges 3000–8000kPa and 2.5–3.0 units, respectively. The model also incorporates experimentally determined steady state permeability data from separate experiments to predict the pulp concentration and fibre pressure throughout a pulp mat during dynamic filtration. Under steady state conditions, a variable Kozeny factor required different values for the permeability parameters when compared to a constant Kozeny factor. The specific surface area was 25–30% lower and the swelling factor was 20–25% higher when a variable Kozeny factor was used. Excellent agreement between experimental data and the dynamic filtration model was achieved when a variable Kozeny factor was used.
Resumo:
The self-assembling behavior and microscopic structure of zinc oxide nanoparticle Langmuir-Blodgett monolayer films were investigated for the case of zinc oxide nanoparticles coated with a hydrophobic layer of dodecanethiol. Evolution of nanoparticle film structure as a function of surface pressure (π) at the air-water interface was monitored in situ using Brewster’s angle microscopy, where it was determined that π=16 mN/m produced near-defect-free monolayer films. Transmission electron micrographs of drop-cast and Langmuir-Schaefer deposited films of the dodecanethiol-coated zinc oxide nanoparticles revealed that the nanoparticle preparation method yielded a microscopic structure that consisted of one-dimensional rodlike assemblies of nanoparticles with typical dimensions of 25 x 400 nm, encased in the organic dodecanethiol layer. These nanoparticle-containing rodlike micelles were aligned into ordered arrangements of parallel rods using the Langmuir-Blodgett technique.
Resumo:
Adequate blood supply and sufficient mechanical stability are necessary for timely fracture healing. Damage to vessels impairs blood supply; hindering the transport of oxygen which is an essential metabolite for cells involved in repair. The degree of mechanical stability determines the mechanical conditions in the healing tissues. The mechanical conditions can influence tissue differentiation and may also inhibit revascularization. Knowledge of the actual conditions in a healing fracture in vivo is extremely limited. This study aimed to quantify the pressure, oxygen tension and temperature in the external callus during the early phase of bone healing. Six Merino-mix sheep underwent a tibial osteotomy. The tibia was stabilized with a standard mono-lateral external fixator. A multi-parameter catheter was placed adjacent to the osteotomy gap on the medial aspect of the tibia. Measurements of oxygen tension and temperature were performed for ten days post-op. Measurements of pressure were performed during gait on days three and seven. The ground reaction force and the interfragmentary movements were measured simultaneously. The maximum pressure during gait increased (p=0.028) from three (41.3 [29.2-44.1] mm Hg) to seven days (71.8 [61.8-84.8] mm Hg). During the same interval, there was no change (p=0.92) in the peak ground reaction force or in the interfragmentary movement (compression: p=0.59 and axial rotation: p=0.11). Oxygen tension in the haematoma (74.1 mm Hg [68.6-78.5]) was initially high post-op and decreased steadily over the first five days. The temperature increased over the first four days before reaching a plateau at approximately 38.5 degrees C on day four. This study is the first to report pressure, oxygen tension and temperature in the early callus tissues. The magnitude of pressure increased even though weight bearing and IFM remained unchanged. Oxygen tensions were initially high in the haematoma and fell gradually with a low oxygen environment first established after four to five days. This study illustrates that in bone healing the local environment for cells may not be considered constant with regard to oxygen tension, pressure and temperature.
Resumo:
Anna Hickey-Mody and Melissa Iocca invented a new name for the cinema-goer at "Bad Boy Bubby" (1993) when they wrote: "In de Heer's film, the viewer is primarily a listener, or aurator, and secondly a spectator" and I have argued the label 'aurator' can also be used for the person experiencing "Ten Canoes" (2006). This Aboriginal Australian Dreamtime fable features dialogue recorded entirely in the Ganalbingu language of the Indigenous people it stars, and is a prime example of what I would suggest can be labeled 'The Aboriginal Australian Films of Rolf de Heer'. "The Tracker" (2002) and "Dr. Plonk" (2007) have also included depictions of Aboriginal Australians and each of the trio utilizes Cat Hope's "innovative sound ideas" to present what I argue is an aural auteur's signature revealing a post-colonial Australian world-view that privileges the justice system and eco-spirituality of Aboriginal Australians.
Resumo:
The results of pressure-tuning Raman spectroscopic, X-ray powder diffraction and solid-state 13C-NMR studies of selected dicarboxylate anions intercalated in a Mg-Al layered double hydroxide (talcite) lattice are reported. The pressure dependences of the vibrational modes are linear for pressures up to 4.6 GPa indicating that no phase transitions occur. The interlayer spacings show that the oxalate, malonate and succinate dianions are oriented perpendicular to the layers, but the glutarate and adipate are tilted. The solid-state 13C-NMR spectra of these materials show full chemical shift anisotropy and, therefore, the anions are not mobile at room temperature.