63 resultados para Physical and chemical parameters


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the physiological tolerance times when wearing explosive and chemical (>35kg) personal protective equipment (PPE) in simulated environmental extremes across a range of differing work intensities. Twelve healthy males undertook nine trials which involved walking on a treadmill at 2.5, 4 and 5.5 km.h-1 in the following environmental conditions, 21, 30 and 37 °C wet bulb globe temperature (WBGT). Participants exercised for 60 min or until volitional fatigue, core temperature reached 39 °C, or heart rate exceeded 90% of maximum. Tolerance time, core temperature, skin temperature, mean body temperature, heart rate and body mass loss were measured. Exercise time was reduced in the higher WBGT environments (WBGT37and work intensities (5.5<4<2.5 km.h-1; P<0.001). The majority of trials (85/108; 78.7%) were terminated due to participant’s heart rate exceeding 90% of their maximum. A total of eight trials (7.4%) lasted the full duration. Only nine (8.3%) trials were terminated due to volitional fatigue and six (5.6%) due to core temperatures in excess of 39 °C. These results demonstrate that physiological tolerance times are influenced by the external environment and workload, and that cardiovascular strain is the limiting factor to work tolerance when wearing this heavy multi layered PPE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multi-season 15N tracer recovery experiment was conducted on an Oxisol cropped with wheat, maize and sorghum to compare crop N recoveries of different fertilisation strategies and determine the main pathways of N losses that limit N recovery in these agroecosystems. In the wheat and maize seasons, 15N-labelled fertiliser was applied as conventional urea (CONV) and urea coated with a nitrification inhibitor (DMPP). In sorghum, the fate of 15N-labelled urea was monitored in this crop following a legume ley pasture (L70) or a grass ley pasture (G100). The fertiliser N applied to sorghum in the legume-cereal rotation was reduced (70 kg N ha−1) compared to the grass-cereal (100 kg N ha−1) to assess the availability of the N residual from the legume ley pasture. Average crop N recoveries were 73 % (CONV) and 77 % (DMPP) in wheat and 50 % (CONV) and 51 % (DMPP) in maize, while in sorghum were 71 % (L70) and 53 % (G100). Data gathered in this study indicate that the intrinsic physical and chemical conditions of Oxisols can be extremely effective in limiting N losses via deep leaching or denitrification. Elevated crop 15N recoveries can be therefore obtained in subtropical Oxisols using conventional urea while in these agroecosystems DMPP urea has no significant scope to increase fertiliser N recovery in the crop. Overall, introducing a legume phase to limit the fertiliser N requirements of the following cereal crop proved to be the most effective strategy to reduce N losses and increase fertiliser N recovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exercise has reported benefits for those with dementia. In the current study we investigated the feasibility of delivery and the physical and functional benefits of an innovative aquatic exercise program for adults with moderate to severe dementia living in a nursing home aged care facility. Ten adults (88.4 years, inter quartile range 12.3) participated twice weekly for 12 weeks. Anthropometric and grip strength data, and measures of physical function and balance were collected at baseline and post-intervention. Feasibility was assessed by attendance, participation, enjoyment and recruitment. Following exercise, participant's left hand grip strength had improved significantly (p = .017). Small to moderate effect sizes were observed for other measures. A number of delivery challenges emerged, but participant enjoyment, benefits and attendance suggest feasibility. Aquatic exercise shows promise as an intervention among those with dementia who live in a nursing home aged care facility. Greater program investigation is warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biofilms are a complex group of microbial cells that adhere to the exopolysaccharide matrix present on the surface of medical devices. Biofilm-associated infections in the medical devices pose a serious problem to the public health and adversely affect the function of the device. Medical implants used in oral and orthopedic surgery are fabricated using alloys such as stainless steel and titanium. The biological behavior, such as osseointegration and its antibacterial activity, essentially depends on both the chemical composition and the morphology of the surface of the device. Surface treatment of medical implants by various physical and chemical techniques are attempted in order to improve their surface properties so as to facilitate bio-integration and prevent bacterial adhesion. The potential source of infection of the surrounding tissue and antimicrobial strategies are from bacteria adherent to or in a biofilm on the implant which should prevent both biofilm formation and tissue colonization. This article provides an overview of bacterial biofilm formation and methods adopted for the inhibition of bacterial adhesion on medical implants

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Explosive ordnance disposal (EOD) technicians are often required to wear specialised clothing combinations that not only protect against the risk of explosion but also potential chemical contamination. This heavy (>35kg) and encapsulating ensemble is likely to increase physiological strain by increasing metabolic heat production and impairing heat dissipation. This study investigated the physiological tolerance times of two different chemical protective undergarments, commonly worn with EOD personal protective clothing, in a range of simulated environmental extremes and work intensities Methods Seven males performed eighteen trials wearing two ensembles. The trials involved walking on a treadmill at 2.5, 4 and 5.5 km.h-1 at each of the following environmental conditions, 21, 30 and 37°C wet bulb globe temperature (WBGT). The trials were ceased if the participants’ core temperature reached 39°C, if heart rate exceeded 90% of maximum, if walking time reached 60 minutes or due to volitional fatigue. Results Physiological tolerance times ranged from 8 to 60 min and the duration (mean difference: 2.78 min, P>0.05) were similar in both ensembles. A significant effect for environment (21>30>37°C WBGT, P<0.05) and work intensity (2.5>4>5.5 km.h-1, P< 0.05) was observed in tolerance time. The majority of trials across both ensembles (101/126; 80.1%) were terminated due to participants achieving a heart rate equivalent to greater than 90% of their maximum. Conclusions Physiological tolerance times wearing these two chemical protective undergarments, worn underneath EOD personal protective clothing, were similar and predominantly limited by cardiovascular strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective Explosive ordnance disposal (EOD) often requires technicians to wear multiple protective garments in challenging environmental conditions. The accumulative effect of increased metabolic cost coupled with decreased heat dissipation associated with these garments predisposes technicians to high levels of physiological strain. It has been proposed that a perceptual strain index (PeSI) using subjective ratings of thermal sensation and perceived exertion as surrogate measures of core body temperature and heart rate, may provide an accurate estimation of physiological strain. Therefore, this study aimed to determine if the PeSI could estimate the physiological strain index (PSI) across a range of metabolic workloads and environments while wearing heavy EOD and chemical protective clothing. Methods Eleven healthy males wore an EOD and chemical protective ensemble while walking on a treadmill at 2.5, 4 and 5.5 km·h− 1 at 1% grade in environmental conditions equivalent to wet bulb globe temperature (WBGT) 21, 30 and 37 °C. WBGT conditions were randomly presented and a maximum of three randomised treadmill walking trials were completed in a single testing day. Trials were ceased at a maximum of 60-min or until the attainment of termination criteria. A Pearson's correlation coefficient, mixed linear model, absolute agreement and receiver operating characteristic (ROC) curves were used to determine the relationship between the PeSI and PSI. Results A significant moderate relationship between the PeSI and the PSI was observed [r = 0.77; p < 0.001; mean difference = 0.8 ± 1.1 a.u. (modified 95% limits of agreement − 1.3 to 3.0)]. The ROC curves indicated that the PeSI had a good predictive power when used with two, single-threshold cut-offs to differentiate between low and high levels of physiological strain (area under curve: PSI three cut-off = 0.936 and seven cut-off = 0.841). Conclusions These findings support the use of the PeSI for monitoring physiological strain while wearing EOD and chemical protective clothing. However, future research is needed to confirm the validity of the PeSI for active EOD technicians operating in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrothermal liquefaction (HTL) presents a viable route for converting a vast range of materials into liquid fuel, without the need for pre-drying. Currently, HTL studies produce bio-crude with properties that fall short of diesel or biodiesel standards. Upgrading bio-crude improves the physical and chemical properties to produce a fuel corresponding to diesel or biodiesel. Properties such as viscosity, density, heating value, oxygen, nitrogen and sulphur content, and chemical composition can be modified towards meeting fuel standards using strategies such as solvent extraction, distillation, hydrodeoxygenation and catalytic cracking. This article presents a review of the upgrading technologies available, and how they might be used to make HTL bio-crude into a transportation fuel that meets current fuel property standards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and rapid method of analysis for mercury ions (Hg2+) and cysteine (Cys) was developed with the use of graphene quantum dots (GQDs) as a fluorescent probe. In the presence of GQDs, Hg2+ cations are absorbed on their negatively charged surface by means of electrostatic interactions. Thus, the fluorescence (FL) of the GQDs would be significantly quenched as a result of the FL charge transfer, e.g. 92% quenching at 450 nm occurs for a 5 μmol L−1 Hg2+ solution. However, when Cys was added, a significant FL enhancement was observed (510% at 450 nm for a 8.0 μmol L−1 Cys solution), and Hg2+ combined with Cys rather than with the GQDs in an aqueous solution. This occurred because a strong metalsingle bondthiol bond formed, displacing the weak electrostatic interactions, and this resulted in an FL enhancement of the GQDs. The limits of detection (LOD) for Hg2+ and Cys were 0.439 nmol L−1 and 4.5 nmol L−1, respectively. Also, this method was used successfully to analyze Hg2+ and Cys in spiked water samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thick package of ~2.7 Ga mafic and ultramafic lavas and intrusions preserved among the Neoarchean of the Kalgoorlie Terrene in Western Australia provides valuable insight into geological processes controlling the most prodigious episode of growth and preservation of juvenile continental crust in Earth’s history. Limited exposure of these rocks results in uncertainty about their age, physical and chemical characteristics, and stratigraphic relationships. This in turn prevents confident correlation of regional occurrences of mafic and ultramafic successions (both intrusive and extrusive) and hinders the interpretation of tectonic setting and magmatic evolution. A recent stratigraphic drilling program of the Neoarchean stratigraphy of the Agnew Greenstone Belt in Western Australia has provided continuous exposures through a c. 7 km thick sequence of mafic and ultramafic units. In this study, we present a volcanological, lithogeochemical and chronological study of the Agnew Greenstone Belt, and provide the first pre-2690 Ma regional correlation across the Kalgoorlie Terrane. The Agnew Greenstone Belt records ~30 m.y. of episodic ultramafic-mafic magmatism that includes two cycles, each defined by a komatiite that is overlain by units that become more evolved and contaminated with time. The sequence is divided into nine conformable packages, each consisting of stacked subaqueous lava flows and comagmatic intrusions, as well as two sills without associated extrusions. Lavas, with the exception of intercalations between two units, form a layer-cake stratigraphy and were likely erupted from a system of fissures tapping the same magma source. The komatiites are not contaminated by continental crust ([La/Sm]PM ~0.7) and are of the Al-undepleted Munro-type. Crustal contamination is evident in many units (Songvang Basalt, Never Can Tell Basalt, Redeemer Basalt, and Turrett Dolerite), as judged by [La/Sm]>1, negative Nb and Ti anomalies, and geochemical mixing trends towards felsic contaminants. Crystal fractionation was also significant, with early olivine and chromite (Mg#>65) followed by plagioclase and clinopyroxene removal (Mg<65), and in the most evolved case, titanomagnetite accumulation. Three new TIMS dates on granophyric zones of mafic sills and one ICP-MS date from an interflow felsic tuff are presented and used for regional stratigraphic correlation. Cycle I magmatism began at ~2720 Ma and ended ~2705 Ma, whereas cycle II began ~2705 Ma and ended at 2690.7±1.2 Ma. Regional correlations indicate the western Kalgoorlie Terrane consists of a remarkably similar stratigraphy that can be recognised at Agnew, Ora Banda and Coolgardie, whereas the eastern part of the terrane (e.g., Kambalda Domain) does not include cycle I, but correlates well with cycle II. This research supports an autochthonous model of greenstone formation, in which one large igneous province, represented by two complete cycles, is constructed on sialic crust. New stratigraphic correlations for the Kalgoorlie Terrane indicate that many units can be traced over distances >100 km, which has implications for exploration targeting for stratigraphically hosted ultramafic Ni and VMS deposits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the influence of different gas environments on the fabrication of surfaces, homogeneously covered with equally sized and spaced micro-structures. Two types of structures have been successfully micro-machined with a femtosecond laser on titanium surfaces in various atmospheres. The surface chemistry of samples machined in oxygen and helium shows TiO2, while machining in nitrogen leads to an additional share of TiN. The actual surface structure was found to vary significantly as a function of the gas environment. We found that the ablated particles and their surface triggered two consecutive events: The optical properties of the gas environment became non-isotropic which then led to the pulse intensity being redistributed throughout the cross section of the laser beam. Additionally, the effective intensity was further reduced for TiN surfaces due to TiN's high reflectivity. Thus, the settings for the applied raster-scanning machining method had to be adjusted for each gas environment to produce comparable structures. In contrast to previous studies, where only noble gases were found suitable to produce homogeneous patches, we obtained them in an oxygen environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biomass and species composition of tropical phytoplankton in Albatross Bay, Gulf of Carpentaria, northern Australia, were examined monthly for 6 yr (1986 to 1992). Chlorophyll a (chl a) concentrations were highest (2 to 5.7 mu g l(-1)) in the wet season at inshore sites, usually coinciding with low salinities (30 to 33 ppt) and high temperatures (29 to 32 degrees C). At the offshore sites chi a concentrations were lower (0.2 to 2 mu g l(-1)) and did not vary seasonally. Nitrate and phosphate concentrations were generally low (0 to 3.68 mu M and 0.09 to 3 mu M for nitrate and phosphate respectively), whereas silicate was present in concentrations in the range 0.19 to 13 mu M. The phytoplankton community was dominated by diatoms, particularly at the inshore sites, as determined by a combination of microscopic and high-performance liquid chromatography (HPLC) pigment analyses. At the offshore sites the proportion of green flagellates increased. The cyanobacterium genus Trichodesmium and the diatom genera Chaetoceros, Rhizosolenia, Bacteriastrum and Thalassionema dominated the phytoplankton caught in 37 mu m mesh nets; however, in contrast to many other coastal areas studied worldwide there was no distinct species succession of the diatoms and only Trichodesmium showed seasonal changes in abundance. This reflects a stable phytoplankton community in waters without pulses of physical and chemical disturbances. These results are discussed in the context of the commercial prawn fishery in the Gulf of Carpentaria and the possible effect of phytoplankton on prawn larval growth and survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A prospective, population-based study was conducted to assess the impact of twin pregnancy on a woman's physical and emotional well-being. It compared women's reports of their general health, experience of a range of specific symptoms, and emotional well-being during pregnancy using the Edinburgh Postnatal Depression Scale. The subjects were 147 women expecting twins and 11,061 women expecting a single child who completed questionnaires at both 20 and 32 weeks’gestation as part of the Avon Longitudinal Study of Pregnancy and Childhood. Results suggested that women expecting twins experienced poorer physical well-being but not poorer emotional well-being than those expecting a single child, even though a significant association between poor health and emotional well-being was found for the population as a whole. It was suggested that the transitory nature of a twin pregnancy, the “special’ status of a twin pregnancy, greater social support, and modified expectations about health may buffer the effects of poor physical health on emotional well-being in a twin pregnancy. The findings should alert those who care for women expecting twins to the greater physical stress these women may feel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coal seam gas (CSG) industry is globally of potentially great importance economically. This study exemplifies the complex relationship between land use and management, groundwater impact and associated water treatment especially in relation to Queensland where a significant increase in the amount of gas extracted over the past 6 years has occurred. In order to effectively manage the environmental impact of the CSG industry it is necessary to appropriately understand the nature of the gas deposits, methods for gas collection, the physicochemical composition of the by-product associated water and the technologies available for water remediation. Australia is mainly considered arid and semi-arid and thus there is a need to not only beneficially reuse water resources but also protect existing ground water reservoirs such as the Great Artesian Basin (GAB). This paper focussed primarily on the Surat Basin located in Queensland and northern New South Wales. The mechanism for CSG formation, relation to local geological features, extraction approach and the potential impact/benefits of associated water was discussed. An outline of the current legislative requirements on physical and chemical properties of associated water in the Surat Basin was also provided, as well as the current treatment technologies used by the major CSG companies. This review was of significance in relation to the formulation of the most appropriate and cost effective management of associated water, while simultaneously preserving existing water resources and the environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, second-generation (non-vegetable oil) feedstocks for biodiesel production are receiving significant attention due to the cost and social effects connected with utilising food products for the production of energy products. The Beauty leaf tree (Calophyllum inophyllum) is a potential source of non-edible oil for producing second-generation biodiesel because of its suitability for production in an extensive variety of atmospheric condition, easy cultivation, high fruit production rate, and the high oil content in the seed. In this study, oil was extracted from Beauty leaf tree seeds through three different oil extraction methods. The important physical and chemical properties of these extracted Beauty leaf oils were experimentally analysed and compared with other commercially available vegetable oils. Biodiesel was produced using a two-stage esterification process combining of an acid catalysed pre-esterification process and an alkali catalysed transesterification process. Fatty acid methyl ester (FAME) profiles and important physicochemical properties were experimentally measured and estimated using equations based on the FAME analysis. The quality of Beauty leaf biodiesels was assessed and compared with commercially available biodiesels through multivariate data analysis using PROMETHEE-GAIA software. The results show that mechanical extraction using a screw press produces oil at a low cost, however, results in low oil yields compared with chemical oil extraction. High pressure and temperature in the extraction process increase oil extraction performance. On the contrary, this process increases the free fatty acid content in the oil. A clear difference was found in the physical properties of Beauty leaf oils, which eventually affected the oil to biodiesel conversion process. However, Beauty leaf oils methyl esters (biodiesel) were very consistent physicochemical properties and able to meet almost all indicators of biodiesel standards. Overall this study found that Beauty leaf is a suitable feedstock for producing second-generation biodiesel in commercial scale. Therefore, the findings of this study are expected to serve as the basis for further development of Beauty leaf as a feedstock for industrial scale second-generation biodiesel production.