73 resultados para Optic Vesicle
Resumo:
Many substation applications require accurate time-stamping. The performance of systems such as Network Time Protocol (NTP), IRIG-B and one pulse per second (1-PPS) have been sufficient to date. However, new applications, including IEC 61850-9-2 process bus and phasor measurement, require accuracy of one microsecond or better. Furthermore, process bus applications are taking time synchronisation out into high voltage switchyards where cable lengths may have an impact on timing accuracy. IEEE Std 1588, Precision Time Protocol (PTP), is the means preferred by the smart grid standardisation roadmaps (from both the IEC and US National Institute of Standards and Technology) of achieving this higher level of performance, and integrates well into Ethernet based substation automation systems. Significant benefits of PTP include automatic path length compensation, support for redundant time sources and the cabling efficiency of a shared network. This paper benchmarks the performance of established IRIG-B and 1-PPS synchronisation methods over a range of path lengths representative of a transmission substation. The performance of PTP using the same distribution system is then evaluated and compared to the existing methods to determine if the performance justifies the additional complexity. Experimental results show that a PTP timing system maintains the synchronising performance of 1-PPS and IRIG-B timing systems, when using the same fibre optic cables, and further meets the needs of process buses in large substations.
Resumo:
Aims: To investigate the relationship between retinal nerve fibre layer thickness and peripheral neuropathy in patients with Type 2 diabetes, particularly in those who are at higher risk of foot ulceration. Methods: Global and sectoral retinal nerve fibre layer thicknesses were measured at 3.45 mm diameter around the optic nerve head using optical coherence tomography (OCT). The level of neuropathy was assessed in 106 participants (82 with Type 2 diabetes and 24 healthy controls) using the 0–10 neuropathy disability score. Participants were stratified into four neuropathy groups: none (0–2), mild (3–5), moderate (6–8), and severe (9–10). A neuropathy disability score ≥ 6 was used to define those at higher risk of foot ulceration. Multivariable regression analysis was performed to assess the effect of neuropathy disability scores, age, disease duration and retinopathy on RNFL thickness. Results: Inferior (but not global or other sectoral) retinal nerve fibre layer thinning was associated with higher neuropathy disability scores (P = 0.03). The retinal nerve fibre layer was significantly thinner for the group with neuropathy disability scores ≥ 6 in the inferior quadrant (P < 0.005). Age, duration of disease and retinopathy levels did not significantly influence retinal nerve fibre layer thickness. Control participants did not show any significant differences in thickness measurements from the group with diabetes and no neuropathy (P > 0.24 for global and all sectors). Conclusions: Inferior quadrant retinal nerve fibre layer thinning is associated with peripheral neuropathy in patients with Type 2 diabetes, and is more pronounced in those at higher risk of foot ulceration.
Resumo:
Vertical displacements are one of the most relevant parameters for structural health monitoring of bridges in both the short and long terms. Bridge managers around the globe are always looking for a simple way to measure vertical displacements of bridges. However, it is difficult to carry out such measurements. On the other hand, in recent years, with the advancement of fiber-optic technologies, fiber Bragg grating (FBG) sensors are more commonly used in structural health monitoring due to their outstanding advantages including multiplexing capability, immunity of electromagnetic interference as well as high resolution and accuracy. For these reasons, using FBG sensors is proposed to develop a simple, inexpensive and practical method to measure vertical displacements of bridges. A curvature approach for vertical displacement measurements using curvature measurements is proposed. In addition, with the successful development of FBG tilt sensors, an inclination approach is also proposed using inclination measurements. A series of simulation tests of a full- scale bridge was conducted. It shows that both of the approaches can be implemented to determine vertical displacements for bridges with various support conditions, varying stiffness (EI) along the spans and without any prior known loading. These approaches can thus measure vertical displacements for most of slab-on-girder and box-girder bridges. Besides, the approaches are feasible to implement for bridges under various loading. Moreover, with the advantages of FBG sensors, they can be implemented to monitor bridge behavior remotely and in real time. A beam loading test was conducted to determine vertical displacements using FBG strain sensors and tilt sensors. The discrepancies as compared with dial gauges reading using the curvature and inclination approaches are 0.14mm (1.1%) and 0.41mm (3.2%), respectively. Further recommendations of these approaches for developments will also be discussed at the end of the paper.
Resumo:
Transport between compartments of eukaryotic cells is mediated by coated vesicles. The archetypal protein coats COPI, COPII, and clathrin are conserved from yeast to human. Structural studies of COPII and clathrin coats assembled in vitro without membranes suggest that coat components assemble regular cages with the same set of interactions between components. Detailed three-dimensional structures of coated membrane vesicles have not been obtained. Here, we solved the structures of individual COPI-coated membrane vesicles by cryoelectron tomography and subtomogram averaging of in vitro reconstituted budding reactions. The coat protein complex, coatomer, was observed to adopt alternative conformations to change the number of other coatomers with which it interacts and to form vesicles with variable sizes and shapes. This represents a fundamentally different basis for vesicle coat assembly.
Resumo:
Basing on the character that Fiber Bragg Grating (FBG) is sensitive to both temperature and strain, by using Al and Fe-Ni alloy’s bimetal structure, we successfully design and manufacture a high accuracy FBG temperature sensor for earthquake premonition. Furthermore, we analyze the accuracy of the FBG sensors with enhanced sensitivity for the first time, and get its accuracy is up to ±0.05℃ with highest resolution ever in all FBG temperature sensors (0.0014℃/pm). This work experimentally proves the feasibility of using FBG in the earthquake premonition monitoring, and builds the foundation for the application of optic technology in earthquake premonition monitoring.
Resumo:
Drawing on three case studies of work in the fields of participatory design, interaction design and electronic arts, we reflect on the implications of these studies for haptic interface research. We propose three themes: gestural; emergent; and expressive; as signposts for a program of research into haptic interaction that could point the way towards novel approaches to haptic interaction and move us from optic to haptic ways of seeing.
Resumo:
Exosomes have been shown to act as mediators for cell to cell communication and as a potential source of biomarkers for many diseases, including prostate cancer. Exosomes are nanosized vesicles secreted by cells and consist of proteins normally found in multivesicular bodies, RNA, DNA and lipids. As a potential source of biomarkers, exosomes have attracted considerable attention, as their protein content resembles that of their cells of origin, even though it is noted that the proteins, miRNAs and lipids found in the exosomes are not a reflective stoichiometric sampling of the contents from the parent cells. While the biogenesis of exosomes in dendritic cells and platelets has been extensively characterized, much less is known about the biogenesis of exosomes in cancer cells. An understanding of the processes involved in prostate cancer will help to further elucidate the role of exosomes and other extracellular vesicles in prostate cancer progression and metastasis. There are few methodologies available for general isolation of exosomes, however validation of those methodologies is necessary to study the role of exosomal-derived biomarkers in various diseases. In this review, we discuss “exosomes” as a member of the family of extracellular vesicles and their potential to provide candidate biomarkers for prostate cancer.
Resumo:
In many bridges, vertical displacements are one of the most relevant parameters for structural health monitoring in both the short- and long-terms. Bridge managers around the globe are always looking for a simple way to measure vertical displacements of bridges. However, it is difficult to carry out such measurements. On the other hand, in recent years, with the advancement of fibre-optic technologies, fibre Bragg grating (FBG) sensors are more commonly used in structural health monitoring due to their outstanding advantages including multiplexing capability, immunity of electromagnetic interference as well as high resolution and accuracy. For these reasons, a methodology for measuring the vertical displacements of bridges using FBG sensors is proposed. The methodology includes two approaches. One of which is based on curvature measurements while the other utilises inclination measurements from successfully developed FBG tilt sensors. A series of simulation tests of a full-scale bridge was conducted. It shows that both approaches can be implemented to measure the vertical displacements for bridges with various support conditions, varying stiffness along the spans and without any prior known loading. A static loading beam test with increasing loads at the mid-span and a beam test with different loading locations were conducted to measure vertical displacements using FBG strain sensors and tilt sensors. The results show that the approaches can successfully measure vertical displacements.
Resumo:
Chlamydia trachomatis is a pathogen of the genital tract and ocular epithelium. Infection is established by the binding of the metabolically inert elementary body (EB) to epithelial cells. These are taken up by endocytosis into a membrane-bound vesicle termed an inclusion. The inclusion avoids fusion with host lysosomes, and the EBs differentiate into the metabolically active reticulate body (RB), which replicates by binary fission within the protected environment of the inclusion. During the extracellular EB stage of the C. trachomatis life cycle, antibody present in genital tract or ocular secretions can inhibit infection both in vivo and in tissue culture. The RB, residing within the intracellular inclusion, is not accessible to antibody, and resolution of infection at this stage requires a cell-mediated immune response mediated by gamma interferon-secreting Th1 cells. Thus, an ideal vaccine to protect against C. trachomatis genital tract infection should induce both antibody (immunoglobulin A [IgA] and IgG) responses in mucosal secretions to prevent infection by chlamydial EB and a strong Th1 response to limit ascending infection to the uterus and fallopian tubes. In the present study we show that transcutaneous immunization with major outer membrane protein (MOMP) in combination with both cholera toxin and CpG oligodeoxynucleotides elicits MOMP-specific IgG and IgA in vaginal and uterine lavage fluid, MOMP-specific IgG in serum, and gamma interferon-secreting T cells in reproductive tract-draining caudal and lumbar lymph nodes. This immunization protocol resulted in enhanced clearance of C. muridarum (C. trachomatis, mouse pneumonitis strain) following intravaginal challenge of BALB/c mice.
Resumo:
Purpose To investigate the application of retinal nerve fibre layer (RNFL) thickness as a marker for severity of diabetic peripheral neuropathy (DPN) in people with Type 2 diabetes. Methods This was a cross-sectional study whereby 61 participants (mean age 61 [41-75 years], mean duration of diabetes 14 [1-40 years], 70% male) with Type 2 diabetes and DPN underwent optical coherence tomography (OCT) scans. Global and 4 quadrant (TSNI) RNFL thicknesses were measured at 3.45mm around the optic nerve head of one eye. Neuropathy disability score (NDS) was used to assess the severity of DPN on a 0 to 10 scale. Participants were divided into three age-matched groups representing mild (NDS=3-5), moderate (NDS=6-8) and severe (NDS=9-10) neuropathy. Two regression models were fitted for statistical analysis: 1) NDS scores as co-variate for global and quadrant RNFL thicknesses, 2) NDS groups as a factor for global RNFL thickness only. Results Mean (SD) RNFL thickness (µm) was 103(9) for mild neuropathy (n=34), 101(10) for moderate neuropathy (n=16) and 95(13) in the group with severe neuropathy (n=11). Global RNFL thickness and NDS scores were statistically significantly related (b=-1.20, p=0.048). When neuropathy was assessed across groups, a trend of thinner mean RNFL thickness was observed with increasing severity of neuropathy; however, this result was not statistically significant (F=2.86, p=0.065). TSNI quadrant analysis showed that mean RNFL thickness reduction in the inferior quadrant was 2.55 µm per 1 unit increase in NDS score (p=0.005). However, the regression coefficients were not statistically significant for RNFL thickness in the superior (b=-1.0, p=0.271), temporal (b=-0.90, p=0.238) and nasal (b=-0.99, p=0.205) quadrants. Conclusions RNFL thickness was reduced with increasing severity of DPN and the effect was most evident in the inferior quadrant. Measuring RNFL thickness using OCT may prove to be a useful, non-invasive technique for identifying severity of DPN and may also provide additional insight into common mechanisms for peripheral neuropathy and RNFL damage.
Resumo:
Purpose To evaluate the association between retinal nerve fibre layer (RNFL) thickness and diabetic peripheral neuropathy in people with type 2 diabetes, and specifically those at higher risk of foot ulceration. Methods RNFL thicknesses was measured globally and in four quadrants (temporal, superior, nasal and inferior) at 3.45 mm diameter around the optic nerve head using optical coherence tomography (OCT). Severity of neuropathy was assessed using the Neuropathy Disability Score (NDS). Eighty-two participants with type 2 diabetes were stratified according to NDS scores (0-10) as: none, mild, moderate, and severe neuropathy. A control group was additionally included (n=17). Individuals with NDS≥ 6 (moderate and severe neuropathy) have been shown to be at higher risk of foot ulceration. A linear regression model was used to determine the association between RNFL and severity of neuropathy. Age, disease duration and diabetic retinopathy levels were fitted in the models. Independent t-test was employed for comparison between controls and the group without neuropathy, as well as for comparison between groups with higher and lower risk of foot ulceration. Analysis of variance was used to compare across all NDS groups. Results RNFL thickness was significantly associated with NDS in the inferior quadrant (b= -1.46, p=0.03). RNFL thicknesses globally and in superior, temporal and nasal quadrants did not show significant associations with NDS (all p>0.51). These findings were independent of the effect of age, disease duration and retinopathy. RNFL was thinner for the group with NDS ≥ 6 in all quadrants but was significant only inferiorly (p<0.005). RNFL for control participants was not significantly different from the group with diabetes and no neuropathy (superior p=0.07, global and all other quadrants: p>0.23). Mean RNFL thickness was not significantly different between the four NDS groups globally and in all quadrants (p=0.08 for inferior, P>0.14 for all other comparisons). Conclusions Retinal nerve fibre layer thinning is associated with neuropathy in people with type 2 diabetes. This relationship is strongest in the inferior retina and in individuals at higher risk of foot ulceration.
Resumo:
Magnetic resonance imaging (MRI) offers the opportunity to study biological tissues and processes in a non-disruptive manner. The technique shows promise for the study of the load-bearing performance (consolidation) of articular cartilage and changes in articular cartilage accompanying osteoarthritis. Consolidation of articular cartilage involves the recording of two transient characteristics: the change over time of strain and the hydrostatic excess pore pressure (HEPP). MRI study of cartilage consolidation under mechanical load is limited by difficulties in measuring the HEPP in the presence of the strong magnetic fields associated with the MRI technique. Here we describe the use of MRI to image and characterize bovine articular cartilage deforming under load in an MRI compatible consolidometer while monitoring pressure with a Fabry-Perot interferometer-based fiber-optic pressure transducer.
Resumo:
Melanopsin containing intrinsically photosensitive Retinal Ganglion Cells (ipRGCs) are a class of photoreceptors with established roles in non-image forming processes. Their contributions to image forming vision may include the estimation of brightness. Animal models have been central for understanding the physiological mechanisms of ipRGC function and there is evidence of conservation of function across species. ipRGCs can be divided into 5 ganglion cell subtypes that show morphological and functional diversity. Research in humans has established that ipRGCs signal environmental irradiance to entrain the central body clock to the solar day for regulating circadian processes and sleep. In addition, ipRGCs mediate the pupil light reflex (PLR), making the PLR a readily accessible behavioural marker of ipRGC activity. Less is known about ipRGC function in retinal and optic nerve disease, with emerging research providing insight into their function in diabetes, retinitis pigmentosa, glaucoma and hereditary optic neuropathy. We briefly review the anatomical distributions, projections and basic physiological mechanisms of ipRGCs, their proposed and known functions in animals and humans with and without eye disease. We introduce a paradigm for differentiating inner and outer retinal inputs to the pupillary control pathway in retinal disease and apply this paradigm to patients with age-related macular degeneration (AMD). In these cases of patients with AMD, we provide the initial evidence that ipRGC function is altered, and that the dysfunction is more pronounced in advanced disease. Our perspective is that with refined pupillometry paradigms, the pupil light reflex can be extended to AMD assessment as a tool for the measurement of inner and outer retinal dysfunction.
Resumo:
Current models of HIV-1 morphogenesis hold that newly synthesized viral Gag polyproteins traffic to and assemble at the cell membrane into spherical protein shells. The resulting late-budding structure is thought to be released by the cellular ESCRT machinery severing the membrane tether connecting it to the producer cell. Using electron tomography and scanning transmission electron microscopy, we find that virions have a morphology and composition distinct from late-budding sites. Gag is arranged as a continuous but incomplete sphere in the released virion. In contrast, late-budding sites lacking functional ESCRT exhibited a nearly closed Gag sphere. The results lead us to propose that budding is initiated by Gag assembly, but is completed in an ESCRT-dependent manner before the Gag sphere is complete. This suggests that ESCRT functions early in HIV-1 release-akin to its role in vesicle formation-and is not restricted to severing the thin membrane tether.
Resumo:
Purpose : To investigate the application of retinal nerve fibre layer (RNFL) thickness as a marker for severity of diabetic peripheral neuropathy (DPN) in people with Type 2 diabetes. Methods : This was a cross-sectional study whereby 61 participants (mean age 61 [41-75 years], mean duration of diabetes 14 [1-40 years], 70% male) with Type 2 diabetes and DPN underwent optical coherence tomography (OCT) scans. Global and 4 quadrant (TSNI) RNFL thicknesses were measured at 3.45mm around the optic nerve head of one eye. Neuropathy disability score (NDS) was used to assess the severity of DPN on a 0 to 10 scale. Participants were divided into three age-matched groups representing mild (NDS=3-5), moderate (NDS=6-8) and severe (NDS=9-10) neuropathy. Two regression models were fitted for statistical analysis: 1) NDS scores as co-variate for global and quadrant RNFL thicknesses, 2) NDS groups as a factor for global RNFL thickness only. Results : Mean (SD) RNFL thickness (µm) was 103(9) for mild neuropathy (n=34), 101(10) for moderate neuropathy (n=16) and 95(13) in the group with severe neuropathy (n=11). Global RNFL thickness and NDS scores were statistically significantly related (b=-1.20, p=0.048). When neuropathy was assessed across groups, a trend of thinner mean RNFL thickness was observed with increasing severity of neuropathy; however, this result was not statistically significant (F=2.86, p=0.065). TSNI quadrant analysis showed that mean RNFL thickness reduction in the inferior quadrant was 2.55 µm per 1 unit increase in NDS score (p=0.005). However, the regression coefficients were not statistically significant for RNFL thickness in the superior (b=-1.0, p=0.271), temporal (b=-0.90, p=0.238) and nasal (b=-0.99, p=0.205) quadrants. Conclusions : RNFL thickness was reduced with increasing severity of DPN and the effect was most evident in the inferior quadrant. Measuring RNFL thickness using OCT may prove to be a useful, non-invasive technique for identifying severity of DPN and may also provide additional insight into common mechanisms for peripheral neuropathy and RNFL damage.