624 resultados para Muti-Modal Biometrics, User Authentication, Fingerprint Recognition, Palm Print Recognition
Resumo:
Recently a new human authentication scheme called PAS (predicate-based authentication service) was proposed, which does not require the assistance of any supplementary device. The main security claim of PAS is to resist passive adversaries who can observe the whole authentication session between the human user and the remote server. In this paper we show that PAS is insecure against both brute force attack and a probabilistic attack. In particular, we show that its security against brute force attack was strongly overestimated. Furthermore, we introduce a probabilistic attack, which can break part of the password even with a very small number of observed authentication sessions. Although the proposed attack cannot completely break the password, it can downgrade the PAS system to a much weaker system similar to common OTP (one-time password) systems.
Resumo:
Introduction Natural product provenance is important in the food, beverage and pharmaceutical industries, for consumer confidence and with health implications. Raman spectroscopy has powerful molecular fingerprint abilities. Surface Enhanced Raman Spectroscopy’s (SERS) sharp peaks allow distinction between minimally different molecules, so it should be suitable for this purpose. Methods Naturally caffeinated beverages with Guarana extract, coffee and Red Bull energy drink as a synthetic caffeinated beverage for comparison (20 µL ea.) were reacted 1:1 with Gold nanoparticles functionalised with anti-caffeine antibody (ab15221) (10 minutes), air dried and analysed in a micro-Raman instrument. The spectral data was processed using Principle Component Analysis (PCA). Results The PCA showed Guarana sourced caffeine varied significantly from synthetic caffeine (Red Bull) on component 1 (containing 76.4% of the variance in the data). See figure 1. The coffee containing beverages, and in particular Robert Timms (instant coffee) were very similar on component 1, but the barista espresso showed minor variance on component 1. Both coffee sourced caffeine samples varied with red Bull on component 2, (20% of variance). ************************************************************ Figure 1 PCA comparing a naturally caffeinated beverage containing Guarana with coffee. ************************************************************ Discussion PCA is an unsupervised multivariate statistical method that determines patterns within data. Figure 1 shows Caffeine in Guarana is notably different to synthetic caffeine. Other researchers have revealed that caffeine in Guarana plants is complexed with tannins. Naturally sourced/ lightly processed caffeine (Monster Energy, Espresso) are more inherently different than synthetic (Red Bull) /highly processed (Robert Timms) caffeine, in figure 1, which is consistent with this finding and demonstrates this technique’s applicability. Guarana provenance is important because it is still largely hand produced and its demand is escalating with recognition of its benefits. This could be a powerful technique for Guarana provenance, and may extend to other industries where provenance / authentication are required, e.g. the wine or natural pharmaceuticals industries.
Resumo:
To identify and categorize complex stimuli such as familiar objects or speech, the human brain integrates information that is abstracted at multiple levels from its sensory inputs. Using cross-modal priming for spoken words and sounds, this functional magnetic resonance imaging study identified 3 distinct classes of visuoauditory incongruency effects: visuoauditory incongruency effects were selective for 1) spoken words in the left superior temporal sulcus (STS), 2) environmental sounds in the left angular gyrus (AG), and 3) both words and sounds in the lateral and medial prefrontal cortices (IFS/mPFC). From a cognitive perspective, these incongruency effects suggest that prior visual information influences the neural processes underlying speech and sound recognition at multiple levels, with the STS being involved in phonological, AG in semantic, and mPFC/IFS in higher conceptual processing. In terms of neural mechanisms, effective connectivity analyses (dynamic causal modeling) suggest that these incongruency effects may emerge via greater bottom-up effects from early auditory regions to intermediate multisensory integration areas (i.e., STS and AG). This is consistent with a predictive coding perspective on hierarchical Bayesian inference in the cortex where the domain of the prediction error (phonological vs. semantic) determines its regional expression (middle temporal gyrus/STS vs. AG/intraparietal sulcus).
Resumo:
The problem of modal choice between rail and air arises as public awareness of carbon dioxide (CO2) emissions by the transportation sector rises. In this paper, we answer this question quantitatively by performing an efficiency benchmarking analysis that takes into account life-cycle CO2 emission due to transport service provision. The paper employs nonparametric efficiency estimation methods, namely a slacks-based inefficiency measure, as well as a more conventional directional distance function approach. We apply them to a panel data set for three major railway companies and the aviation sector in Japan for the period from 1999 to 2007. Results shows that, contrary to the common argument, air transport can still be more socially efficient than rail transport, even when the environmental load due to CO2 emission is incorporated. This is due to the aviation sector's extremely low user cost, measured in terms of in-vehicle time. In other words, aviation is a necessary transportation mode for those with a very high willingness to pay for their time.
Resumo:
While existing multi-biometic Dempster-Shafer the- ory fusion approaches have demonstrated promising perfor- mance, they do not model the uncertainty appropriately, sug- gesting that further improvement can be achieved. This research seeks to develop a unified framework for multimodal biometric fusion to take advantage of the uncertainty concept of Dempster- Shafer theory, improving the performance of multi-biometric authentication systems. Modeling uncertainty as a function of uncertainty factors affecting the recognition performance of the biometric systems helps to address the uncertainty of the data and the confidence of the fusion outcome. A weighted combination of quality measures and classifiers performance (Equal Error Rate) are proposed to encode the uncertainty concept to improve the fusion. We also found that quality measures contribute unequally to the recognition performance, thus selecting only significant factors and fusing them with a Dempster-Shafer approach to generate an overall quality score play an important role in the success of uncertainty modeling. The proposed approach achieved a competitive performance (approximate 1% EER) in comparison with other Dempster-Shafer based approaches and other conventional fusion approaches.
Resumo:
In the field of face recognition, sparse representation (SR) has received considerable attention during the past few years, with a focus on holistic descriptors in closed-set identification applications. The underlying assumption in such SR-based methods is that each class in the gallery has sufficient samples and the query lies on the subspace spanned by the gallery of the same class. Unfortunately, such an assumption is easily violated in the face verification scenario, where the task is to determine if two faces (where one or both have not been seen before) belong to the same person. In this study, the authors propose an alternative approach to SR-based face verification, where SR encoding is performed on local image patches rather than the entire face. The obtained sparse signals are pooled via averaging to form multiple region descriptors, which then form an overall face descriptor. Owing to the deliberate loss of spatial relations within each region (caused by averaging), the resulting descriptor is robust to misalignment and various image deformations. Within the proposed framework, they evaluate several SR encoding techniques: l1-minimisation, Sparse Autoencoder Neural Network (SANN) and an implicit probabilistic technique based on Gaussian mixture models. Thorough experiments on AR, FERET, exYaleB, BANCA and ChokePoint datasets show that the local SR approach obtains considerably better and more robust performance than several previous state-of-the-art holistic SR methods, on both the traditional closed-set identification task and the more applicable face verification task. The experiments also show that l1-minimisation-based encoding has a considerably higher computational cost when compared with SANN-based and probabilistic encoding, but leads to higher recognition rates.
Resumo:
The richness of the iris texture and its variability across individuals make it a useful biometric trait for personal authentication. One of the key stages in classical iris recognition is the normalization process, where the annular iris region is mapped to a dimensionless pseudo-polar coordinate system. This process results in a rectangular structure that can be used to compensate for differences in scale and variations in pupil size. Most iris recognition methods in the literature adopt linear sampling in the radial and angular directions when performing iris normalization. In this paper, a biomechanical model of the iris is used to define a novel nonlinear normalization scheme that improves iris recognition accuracy under different degrees of pupil dilation. The proposed biomechanical model is used to predict the radial displacement of any point in the iris at a given dilation level, and this information is incorporated in the normalization process. Experimental results on the WVU pupil light reflex database (WVU-PLR) indicate the efficacy of the proposed technique, especially when matching iris images with large differences in pupil size.
Resumo:
This paper investigates the effectiveness of virtual product placement as a marketing tool by examining the relationship between brand recall and recognition and virtual product placement. It also aims to address a gap in the existing academic literature by focusing on the impact of product placement on recall and recognition of new brands. The growing importance of product placement is discussed and a review of previous research on product placement and virtual product placement is provided. The research methodology used to study the recall and recognition effects of virtual product placement are described and key findings presented. Finally, implications are discussed and recommendations for future research provided.