599 resultados para Mechanical variables measurement


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bulk heterojunction organic solar cells based on poly[4,7-bis(3- dodecylthiophene-2-yl) benzothiadiazole-co-benzothiadiazole] and [6,6]-phenyl C71-butyric acid methyl ester are investigated. A prominent kink is observed in the fourth quadrant of the current density-voltage (J-V) response. Annealing the active layer prior to cathode deposition eliminates the kink. The kink is attributed to an extraction barrier. The J-V response in these devices is well described by a power law. This behavior is attributed to an imbalance in charge carrier mobility. An expected photocurrent for the device displaying a kink in the J-V response is determined by fitting to a power law. The difference between the expected and measured photocurrent allows for the determination of a voltage drop within the device. Under simulated 1 sun irradiance, the peak voltage drop and contact resistance at short circuit are 0.14 V and 90 Ω, respectively. © 2012 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Determining the condition as well as the remaining life of an insulation system is essential for the reliable operation of large oil-filled power transformers. Frequency-domain spectroscopy (FDS) is one of the diagnostic techniques used to identify the dielectric status of a transformer. Currently, this technique can only be implemented on a de-energized transformer. This paper presents an initial investigation into a novel online monitoring method based on FDS dielectric measurements for transformers. The proposed technique specifically aims to address the real operational constraints of online testing. This is achieved by designing an online testing model extending the basic “extended Debye” linear dielectric model and taking unique noise issues only experienced during online measurements into account via simulations. Approaches to signal denoising and potential problems expected to be encountered during online measurements will also be discussed. Using fixed-frequency sinusoidal excitation waveforms will result in a long measurement times. The use of alternatives such as a chirp has been investigated using simulations. The results presented in the paper predict that reliable measurements should be possible during online testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study demonstrates a novel technique of preparing drug colloid probes to determine the adhesion force between a model drug salbutamol sulphate (SS) and the surfaces of polymer microparticles to be used as carriers for the dispersion of drug particles from dry powder inhaler (DPI) formulations. Model silica probes of approximately 4 lm size, similar to a drug particle used in DPI formulations, were coated with a saturated SS solution with the aid of capillary forces acting between the silica probe and the drug solution. The developed method of ensuring a smooth and uniform layer of SS on the silica probe was validated using X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). Using the same technique, silica microspheres pre-attached on the AFM cantilever were coated with SS. The adhesion forces between the silica probe and drug coated silica (drug probe) and polymer surfaces (hydrophilic and hydrophobic) were determined. Our experimental results showed that the technique for preparing the drug probe was robust and can be used to determine the adhesion force between hydrophilic/ hydrophobic drug probe and carrier surfaces to gain a better understanding on drug carrier adhesion forces in DPI formulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Supine imaging modalities provide valuable 3D information on scoliotic anatomy, but the altered spine geometry between the supine and standing positions affects the Cobb angle measurement. Previous studies report a mean 7°-10° Cobb angle increase from supine to standing, but none have reported the effect of endplate pre-selection or whether other parameters affect this Cobb angle difference. Methods Cobb angles from existing coronal radiographs were compared to those on existing low-dose CT scans taken within three months of the reference radiograph for a group of females with adolescent idiopathic scoliosis. Reformatted coronal CT images were used to measure supine Cobb angles with and without endplate pre-selection (end-plates selected from the radiographs) by two observers on three separate occasions. Inter and intra-observer measurement variability were assessed. Multi-linear regression was used to investigate whether there was a relationship between supine to standing Cobb angle change and eight variables: patient age, mass, standing Cobb angle, Risser sign, ligament laxity, Lenke type, fulcrum flexibility and time delay between radiograph and CT scan. Results Fifty-two patients with right thoracic Lenke Type 1 curves and mean age 14.6 years (SD 1.8) were included. The mean Cobb angle on standing radiographs was 51.9° (SD 6.7). The mean Cobb angle on supine CT images without pre-selection of endplates was 41.1° (SD 6.4). The mean Cobb angle on supine CT images with endplate pre-selection was 40.5° (SD 6.6). Pre-selecting vertebral endplates increased the mean Cobb change by 0.6° (SD 2.3, range −9° to 6°). When free to do so, observers chose different levels for the end vertebrae in 39% of cases. Multi-linear regression revealed a statistically significant relationship between supine to standing Cobb change and fulcrum flexibility (p = 0.001), age (p = 0.027) and standing Cobb angle (p < 0.001). The 95% confidence intervals for intra-observer and inter-observer measurement variability were 3.1° and 3.6°, respectively. Conclusions Pre-selecting vertebral endplates causes minor changes to the mean supine to standing Cobb change. There is a statistically significant relationship between supine to standing Cobb change and fulcrum flexibility such that this difference can be considered a potential alternative measure of spinal flexibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid powerplants combining internal combustion engines and electric motor prime movers have been extensively developed for land- and marine-based transport systems. The use of such powerplants in airborne applications has been historically impractical due to energy and power density constraints. Improvements in battery and electric motor technology make aircraft hybrid powerplants feasible. This paper presents a technique for determining the feasibility and mechanical effectiveness of powerplant hybridisation. In this work, a prototype aircraft hybrid powerplant was designed, constructed and tested. It is shown that an additional 35% power can be supplied from the hybrid system with an overall weight penalty of 5%, for a given unmanned aerial system. A flight dynamic model was developed using the AeroSim Blockset in MATLAB Simulink. The results have shown that climb rates can be improved by 56% and endurance increased by 13% when using the hybrid powerplant concept.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of compact fluorescent lamps (CFLs) in domestic residences has increased rapidly due to their higher energy efficiency and longer life expectancy when compared with traditional incandescent light bulbs. Through measurement of illuminance, actual power and apparent power, the actual efficacy and associated power factor of CFLs are studied in this paper. It is found that for an individual CFL, although its power consumption and lighting output (i.e. luminous flux) may be higher or lower than the stated values provided by the lighting manufacturers, the actual efficacy would most likely be equal to or better than the efficacy calculated from the given rated power and lumen from the manufacturers. The typical power factor for CFLs was 0.63.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background The purpose of this study was the development of a valid and reliable “Mechanical and Inflammatory Low Back Pain Index” (MIL) for assessment of non-specific low back pain (NSLBP). This 7-item tool assists practitioners in determining whether symptoms are predominantly mechanical or inflammatory. Methods Participants (n = 170, 96 females, age = 38 ± 14 years-old) with NSLP were referred to two Spanish physiotherapy clinics and completed the MIL and the following measures: the Roland Morris Questionnaire (RMQ), SF-12 and “Backache Index” (BAI) physical assessment test. For test-retest reliability, 37 consecutive patients were assessed at baseline and three days later during a non-treatment period. Face and content validity, practical characteristics, factor analysis, internal consistency, discriminant validity and convergent validity were assessed from the full sample. Results A total of 27 potential items that had been identified for inclusion were subsequently reduced to 11 by an expert panel. Four items were then removed due to cross-loading under confirmatory factor analysis where a two-factor model yielded a good fit to the data (χ2 = 14.80, df = 13, p = 0.37, CFI = 0.98, and RMSEA = 0.029). The internal consistency was moderate (α = 0.68 for MLBP; 0.72 for ILBP), test-retest reliability high (ICC = 0.91; 95%CI = 0.88-0.93) and discriminant validity good for either MLBP (AUC = 0.74) and ILBP (AUC = 0.92). Convergent validity was demonstrated through similar but weak correlations between the ILBP and both the RMQ and BAI (r = 0.34, p < 0.001) and the MLBP and BAI (r = 0.38, p < 0.001). Conclusions The MIL is a valid and reliable clinical tool for patients with NSLBP that discriminates between mechanical and inflammatory LBP. Keywords: Low back pain; Psychometrics properties; Pain measurement; Screening tool; Inflammatory; Mechanical

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The most important aspect of modelling a geological variable, such as metal grade, is the spatial correlation. Spatial correlation describes the relationship between realisations of a geological variable sampled at different locations. Any method for spatially modelling such a variable should be capable of accurately estimating the true spatial correlation. Conventional kriged models are the most commonly used in mining for estimating grade or other variables at unsampled locations, and these models use the variogram or covariance function to model the spatial correlations in the process of estimation. However, this usage assumes the relationships of the observations of the variable of interest at nearby locations are only influenced by the vector distance between the locations. This means that these models assume linear spatial correlation of grade. In reality, the relationship with an observation of grade at a nearby location may be influenced by both distance between the locations and the value of the observations (ie non-linear spatial correlation, such as may exist for variables of interest in geometallurgy). Hence this may lead to inaccurate estimation of the ore reserve if a kriged model is used for estimating grade of unsampled locations when nonlinear spatial correlation is present. Copula-based methods, which are widely used in financial and actuarial modelling to quantify the non-linear dependence structures, may offer a solution. This method was introduced by Bárdossy and Li (2008) to geostatistical modelling to quantify the non-linear spatial dependence structure in a groundwater quality measurement network. Their copula-based spatial modelling is applied in this research paper to estimate the grade of 3D blocks. Furthermore, real-world mining data is used to validate this model. These copula-based grade estimates are compared with the results of conventional ordinary and lognormal kriging to present the reliability of this method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of aerosol particle number size distributions (15-700 nm), CO and NOx were performed in a bus tunnel, Australia. Daily mean particle size distributions of mixed diesel/CNG (Compressed Natural Gas) buses traffic flow were determined in 4 consecutive measurement days. EFs (Emission Factors) of Particle size distribution of diesel buses and CNG buses were obtained by MLR (Multiple Linear Regression) methods, particle distributions of diesel buses and CNG buses were observed as single accumulation mode and nuclei-mode separately. Particle size distributions of mixed traffic flow were decomposed by two log-normal fitting curves for each 30 minutes interval mean scans, all the mix fleet PSD emission can be well fitted by the summation of two log-normal distribution curves, and these were composed of nuclei mode curve and accumulation curve, which were affirmed as the CNG buses and diesel buses PN emission curves respectively. Finally, particle size distributions of diesel buses and CNG buses were quantified by statistical whisker-box charts. For log-normal particle size distribution of diesel buses, accumulation mode diameters were 74.5~87.5nm, geometric standard deviations were 1.89~1.98. As to log-normal particle size distribution of CNG buses, nuclei-mode diameters were 21~24 nm, geometric standard deviations were 1.27~1.31.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. The dimensions of the thoracic intervertebral foramen in adolescent idiopathic scoliosis (AIS) have not previously been quantified. During posterior approach scoliosis correction surgery pedicle screws may occasionally breach into the foramen. Better understanding of the dimensions of the foramen may be useful in surgical planning. This study describes a reproducible method for measurement of the thoracic foramen in AIS using computerized tomography (CT). Methods. In 23 pre-operative female patients with Lenke 1 type AIS with right side convexity major curves confined to the thoracic spine the foraminal height (FH), foraminal width (FW), pedicle to superior articular process distance (P-SAP) and cross sectional foraminal area (FA) were measured using multiplanar reconstructed CT. Measurements were made at entrance, midpoint and exit of the thoracic foramina from T1/T2 to T11/T12. Results were correlated with potential dependent variables of major curve Cobb Angle measured on X-ray and CT, Age, Weight, Lenke classification subtype, Risser Grade and number of spinal levels in the major curve. Results. The FH, FW, P-SAP and FA dimensions and ratios are all significantly larger on the convexity of the major curve and maximal at or close to the apex. Mean thoracic foraminal dimensions change in a predictable manner relative to position on the major thoracic curve. There was no significant correlation with the measured foraminal dimensions or ratios and the potential dependent variables. The average ratio of convexity to concavity dimensions at the apex foramina for entrance, midpoint and exit respectively are FH (1.50, 1.38, 1.25), FW (1.28, 1.30, 0.98), FA (2.06, 1.84, 1.32), P-SAP (1.61, 1.47, 1.30). Conclusion. Foraminal dimensions of the thoracic spine are significantly affected by AIS. Foraminal dimensions have a predictable convexity to concavity ratio relative to the proximity to the major curve apex. Surgeons should be aware of these anatomical differences during scoliosis correction surgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION The dimensions of the thoracic intervertebral foramen in adolescent idiopathic scoliosis (AIS) have not previously been quantified. During posterior approach scoliosis correction surgery pedicle screws may occasionally breach into the foramen. Better understanding of the dimensions of the foramen may be useful in surgical planning. This study describes a reproducible method for measurement of the thoracic foramen in AIS using computerized tomography (CT). METHODS In 23 pre-operative female patients with Lenke 1 type AIS with right side convexity major curves confined to the thoracic spine the foraminal height (FH), foraminal width (FW), pedicle to superior articular process distance (P-SAP) and cross sectional foraminal area (FA) were measured using multiplanar reconstructed CT. Measurements were made at entrance, midpoint and exit of the thoracic foramina from T1/T2 to T11/T12. Results were correlated with potential dependent variables of major curve Cobb Angle measured on X-ray and CT, Age, Weight, Lenke classification subtype, Risser Grade and number of spinal levels in the major curve. RESULTS The FH, FW, P-SAP and FA dimensions and ratios are all significantly larger on the convexity of the major curve and maximal at or close to the apex. Mean thoracic foraminal dimensions change in a predictable manner relative to position on the major thoracic curve. There was no significant correlation with the measured foraminal dimensions or ratios and the potential dependent variables. The average ratio of convexity to concavity dimensions at the apex foramina for entrance, midpoint and exit respectively are FH (1.50, 1.38, 1.25), FW (1.28, 1.30, 0.98), FA (2.06, 1.84, 1.32), P-SAP (1.61, 1.47, 1.30). CONCLUSION Foraminal dimensions of the thoracic spine are significantly affected by AIS. Foraminal dimensions have a predictable convexity to concavity ratio relative to the proximity to the major curve apex. Surgeons should be aware of these anatomical differences during scoliosis correction surgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The measurement of radon ((222)Rn) activity flux using activated charcoal canisters was examined to investigate the distribution of the adsorbed (222)Rn in the charcoal bed and the relationship between (222)Rn activity flux and exposure time. The activity flux of (222)Rn from five sources of varying strengths was measured for exposure times of one, two, three, five, seven, 10, and 14 days. The distribution of the adsorbed (222)Rn in the charcoal bed was obtained by dividing the bed into six layers and counting each layer separately after the exposure. (222)Rn activity decreased in the layers that were away from the exposed surface. Nevertheless, the results demonstrated that only a small correction might be required in the actual application of charcoal canisters for activity flux measurement, where calibration standards were often prepared by the uniform mixing of radium ((226)Ra) in the matrix. This was because the diffusion of (222)Rn in the charcoal bed and the detection efficiency as a function of the charcoal depth tended to counterbalance each other. The influence of exposure time on the measured (222)Rn activity flux was observed in two situations of the canister exposure layout: (a) canister sealed to an open bed of the material and (b) canister sealed over a jar containing the material. The measured (222)Rn activity flux decreased as the exposure time increased. The change in the former situation was significant with an exponential decrease as the exposure time increased. In the latter case, lesser reduction was noticed in the observed activity flux with respect to exposure time. This reduction might have been related to certain factors, such as absorption site saturation or the back diffusion of (222)Rn gas occurring at the canister-soil interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – Ideally, there is no wear in hydrodynamic lubrication regime. A small amount of wear occurs during start and stop of the machines and the amount of wear is so small that it is difficult to measure with accuracy. Various wear measuring techniques have been used where out-of-roundness was found to be the most reliable method of measuring small wear quantities in journal bearings. This technique was further developed to achieve higher accuracy in measuring small wear quantities. The method proved to be reliable as well as inexpensive. The paper aims to discuss these issues. Design/methodology/approach – In an experimental study, the effect of antiwear additives was studied on journal bearings lubricated with oil containing solid contaminants. The test duration was too long and the wear quantities achieved were too small. To minimise the test duration, short tests of about 90 min duration were conducted and wear was measured recording changes in variety of parameters related to weight, geometry and wear debris. The out-of-roundness was found to be the most effective method. This method was further refined by enlarging the out-of-roundness traces on a photocopier. The method was proved to be reliable and inexpensive. Findings – Study revealed that the most commonly used wear measurement techniques such as weight loss, roughness changes and change in particle count were not adequate for measuring small wear quantities in journal bearings. Out-of-roundness method with some refinements was found to be one of the most reliable methods for measuring small wear quantities in journal bearings working in hydrodynamic lubrication regime. By enlarging the out-of-roundness traces and determining the worn area of the bearing cross-section, weight loss in bearings was calculated, which was repeatable and reliable. Research limitations/implications – This research is a basic in nature where a rudimentary solution has been developed for measuring small wear quantities in rotary devices such as journal bearings. The method requires enlarging traces on a photocopier and determining the shape of the worn area on an out-of-roundness trace on a transparency, which is a simple but a crude method. This may require an automated procedure to determine the weight loss from the out-of-roundness traces directly. This method can be very useful in reducing test duration and measuring wear quantities with higher precision in situations where wear quantities are very small. Practical implications – This research provides a reliable method of measuring wear of circular geometry. The Talyrond equipment used for measuring the change in out-of-roundness due to wear of bearings indicates that this equipment has high potential to be used as a wear measuring device also. Measurement of weight loss from the traces is an enhanced capability of this equipment and this research may lead to the development of a modified version of Talyrond type of equipment for wear measurements in circular machine components. Originality/value – Wear measurement in hydrodynamic bearings requires long duration tests to achieve adequate wear quantities. Out-of-roundness is one of the geometrical parameters that changes with progression of wear in a circular shape components. Thus, out-of-roundness is found to be an effective wear measuring parameter that relates to change in geometry. Method of increasing the sensitivity and enlargement of out-of-roundness traces is original work through which area of worn cross-section can be determined and weight loss can be derived for materials of known density with higher precision.