358 resultados para Learning-Content-System
Resumo:
This paper deals with the problem of using the data mining models in a real-world situation where the user can not provide all the inputs with which the predictive model is built. A learning system framework, Query Based Learning System (QBLS), is developed for improving the performance of the predictive models in practice where not all inputs are available for querying to the system. The automatic feature selection algorithm called Query Based Feature Selection (QBFS) is developed for selecting features to obtain a balance between the relative minimum subset of features and the relative maximum classification accuracy. Performance of the QBLS system and the QBFS algorithm is successfully demonstrated with a real-world application
Resumo:
This paper reports on a study to measure the effectiveness of an integrated learning system (ILS) in improving mathematics achievement for low achieving Year 5 to 9 students. The study found that statistically significant gains on the integrated learning system were not supported by scores on standardised mathematics achievement tests. It also found that although student attitudes to computers decreased (significantly for some items), the students still liked the integrated learning system and felt that it had helped them to learn.
Resumo:
This paper does two things. Firstly, it examines the literature that coalesces around theoretical models of teacher professional development (PD) within a professional learning community (PLC). Secondly, these models are used to analyse support provided to two year 3 teachers, while implementing the draft Queensland mathematics syllabus. The findings from this study suggest that the development of this small PLC extended the teachers’ Zone of Enactment which in turn led to teacher action and reflection. This was demonstrated by the teachers leading their own learning as well as that of their students.
Resumo:
We propose to design a Custom Learning System that responds to the unique needs and potentials of individual students, regardless of their location, abilities, attitudes, and circumstances. This project is intentionally provocative and future-looking but it is not unrealistic or unfeasible. We propose that by combining complex learning databases with a learner’s personal data, we could provide all students with a personal, customizable, and flexible education. This paper presents the initial research undertaken for this project of which the main challenges were to broadly map the complex web of data available, to identify what logic models are required to make the data meaningful for learning, and to translate this knowledge into simple and easy-to-use interfaces. The ultimate outcome of this research will be a series of candidate user interfaces and a broad system logic model for a new smart system for personalized learning. This project is student-centered, not techno-centric, aiming to deliver innovative solutions for learners and schools. It is deliberately future-looking, allowing us to ask questions that take us beyond the limitations of today to motivate new demands on technology.
Resumo:
User-Based intelligent systems are already commonplace in a student’s online digital life. Each time they browse, search, buy, join, comment, play, travel, upload, download, a system collects, analyses and processes data in an effort to customise content and further improve services. This panel session will explore how intelligent systems, particularly those that gather data from mobile devices, can offer new possibilities to assist in the delivery of customised, personal and engaging learning experiences. The value of intelligent systems for education lies in their ability to formulate authentic and complex learner profiles that bring together and systematically integrate a student’s personal world with a formal curriculum framework. As we well know, a mobile device can collect data relating to a student’s interests (gathered from search history, applications and communications), location, surroundings and proximity to others (GPS, Bluetooth). However, what has been less explored is the opportunity for a mobile device to map the movements and activities of a student from moment to moment and over time. This longitudinal data provides a holistic profile of a student, their state and surroundings. Analysing this data may allow us to identify patterns that reveal a student’s learning processes; when and where they work best and for how long. Through revealing a student’s state and surroundings outside of schools hour, this longitudinal data may also highlight opportunities to transform a student’s everyday world into an inventory for learning, punctuating their surroundings with learning recommendations. This would in turn lead to new ways to acknowledge and validate and foster informal learning, making it legitimate within a formal curriculum.
Resumo:
My research investigates why nouns are learned disproportionately more frequently than other kinds of words during early language acquisition (Gentner, 1982; Gleitman, et al., 2004). This question must be considered in the context of cognitive development in general. Infants have two major streams of environmental information to make meaningful: perceptual and linguistic. Perceptual information flows in from the senses and is processed into symbolic representations by the primitive language of thought (Fodor, 1975). These symbolic representations are then linked to linguistic input to enable language comprehension and ultimately production. Yet, how exactly does perceptual information become conceptualized? Although this question is difficult, there has been progress. One way that children might have an easier job is if they have structures that simplify the data. Thus, if particular sorts of perceptual information could be separated from the mass of input, then it would be easier for children to refer to those specific things when learning words (Spelke, 1990; Pylyshyn, 2003). It would be easier still, if linguistic input was segmented in predictable ways (Gentner, 1982; Gleitman, et al., 2004) Unfortunately the frequency of patterns in lexical or grammatical input cannot explain the cross-cultural and cross-linguistic tendency to favor nouns over verbs and predicates. There are three examples of this failure: 1) a wide variety of nouns are uttered less frequently than a smaller number of verbs and yet are learnt far more easily (Gentner, 1982); 2) word order and morphological transparency offer no insight when you contrast the sentence structures and word inflections of different languages (Slobin, 1973) and 3) particular language teaching behaviors (e.g. pointing at objects and repeating names for them) have little impact on children's tendency to prefer concrete nouns in their first fifty words (Newport, et al., 1977). Although the linguistic solution appears problematic, there has been increasing evidence that the early visual system does indeed segment perceptual information in specific ways before the conscious mind begins to intervene (Pylyshyn, 2003). I argue that nouns are easier to learn because their referents directly connect with innate features of the perceptual faculty. This hypothesis stems from work done on visual indexes by Zenon Pylyshyn (2001, 2003). Pylyshyn argues that the early visual system (the architecture of the "vision module") segments perceptual data into pre-conceptual proto-objects called FINSTs. FINSTs typically correspond to physical things such as Spelke objects (Spelke, 1990). Hence, before conceptualization, visual objects are picked out by the perceptual system demonstratively, like a finger pointing indicating ‘this’ or ‘that’. I suggest that this primitive system of demonstration elaborates on Gareth Evan's (1982) theory of nonconceptual content. Nouns are learnt first because their referents attract demonstrative visual indexes. This theory also explains why infants less often name stationary objects such as plate or table, but do name things that attract the focal attention of the early visual system, i.e., small objects that move, such as ‘dog’ or ‘ball’. This view leaves open the question how blind children learn words for visible objects and why children learn category nouns (e.g. 'dog'), rather than proper nouns (e.g. 'Fido') or higher taxonomic distinctions (e.g. 'animal').
Resumo:
This paper provides a framework for analysing the role of Australia’s research system in promoting national economic development. The paper is in two parts. Part One focuses on knowledge diffusion and technological development and emphasises the systemic nature of innovation processes within the emerging context of ‘learning economies’. The key understandings relevant to a nation’s research system are drawn out from contemporary developments in the international literature on ‘learning economies’. Some of the implications for Australia are discussed. The aim is to provide readers with some indications of what to look for in considering options for the future of Australia’s research system. More detailed information on relevant aspects of Australia’s industrial and trade structure, the extent of the R&D effort in industry and on issues such as management capability can be obtained from (Marceau et al 1997). In the second part, broad elements of the Australian research system are reviewed in the light of findings from the literature. The central role of universities in the innovation and research systems is described. Actions that can be taken by both universities and governments are suggested, particularly regarding the need to build and maintain efficient information flows at local, national and international levels. The paper briefly points to the nature of a research system capable of contributing effectively to the wealth of the nation and indicates some possible directions for enabling Australia to meet the demands of, and profit from, a knowledge-based economy.
Resumo:
Digital forensic examiners often need to identify the type of a file or file fragment based only on the content of the file. Content-based file type identification schemes typically use a byte frequency distribution with statistical machine learning to classify file types. Most algorithms analyze the entire file content to obtain the byte frequency distribution, a technique that is inefficient and time consuming. This paper proposes two techniques for reducing the classification time. The first technique selects a subset of features based on the frequency of occurrence. The second speeds classification by sampling several blocks from the file. Experimental results demonstrate that up to a fifteen-fold reduction in file size analysis time can be achieved with limited impact on accuracy.
Resumo:
This paper examines some of the central global ethical and governance challenges of climate change and carbon emis-sions reduction in relation to globalization, the “global financial crisis” (GFC), and unsustainable conceptions of the “good life”, and argues in favour of the development of a global carbon “integrity system”. It is argued that a funda-mental driver of our climate problems is the incipient spread of an unsustainable Western version of the “good life”, where resource-intensive, high-carbon western lifestyles, although frequently criticized as unsustainable and deeply unsatisfying, appear to have established an unearned ethical legitimacy. While the ultimate solution to climate change is the development of low carbon lifestyles, the paper argues that it is also important that economic incentives support and stimulate that search: the sustainable versions of the good life provide an ethical pull, whilst the incentives provide an economic push. Yet, if we are going to secure sustainable low carbon lifestyles, it is argued, we need more than the ethical pull and the economic push. Each needs to be institutionalized—built into the governance of global, regional, national, sub-regional, corporate and professional institutions. Where currently weakness in each exacerbates the weaknesses in others, it is argued that governance reform is required in all areas supporting sustainable, low carbon versions of the good life.
Resumo:
Purpose: E-learning is an organisationally risky investment given the cost and poor levels of adoption by users. In order to gain a better understanding of this problem, a study was conducted into the use of e-learning in a rail organisation. Design/methodology/approach: Using an online survey, employees of a rail-sector organisation were questioned about their use and likelihood of adoption of e-learning. This study explores the factors that affect the way in which learners experience and perceive such systems. Using statistical analysis, twelve hypotheses are tested and explored. Relationships between learning satisfaction, intention to adopt and the characteristics of e-learning systems were established. Findings: The study found that e-learning characteristics can buffer the relationship between learner characteristics and intention to adopt further e-learning in the future. Further, we found that high levels of support can compensate individuals who are low in technological efficacy to adopt e-learning. Research limitations/implications: The cross-sectional design of the study and its focus on measuring intention to adopt as opposed to actual adoption are both limitations. Future research using longitudinal design and research employing a time lag design measuring actual adoption as well as intention are recommended. Practical implications: From a practical perspective, organizations can focus on the actual content and authenticity of the learning experience delivered by the e-learning system to significantly impact how employees will perceive and use e-learning in the future. Low technological efficacy individuals tend not to adopt new technology. Instead of changing individuals’ personalities, organizations can implement supportive policies and practices which would lead to higher e-learning adoption rate among low efficacy individuals. Originality/value: The study integrates technology adoption and learning literatures in developing enablers for e-learning in organizations. Further, this study collects data from rail employees, and therefore the findings are practical to an industry.
Resumo:
Whole-body computer control interfaces present new opportunities to engage children with games for learning. Stomp is a suite of educational games that use such a technology, allowing young children to use their whole body to interact with a digital environment projected on the floor. To maximise the effectiveness of this technology, tenets of self-determination theory (SDT) are applied to the design of Stomp experiences. By meeting user needs for competence, autonomy, and relatedness our aim is to increase children's engagement with the Stomp learning platform. Analysis of Stomp's design suggests that these tenets are met. Observations from a case study of Stomp being used by young children show that they were highly engaged and motivated by Stomp. This analysis demonstrates that continued application of SDT to Stomp will further enhance user engagement. It also is suggested that SDT, when applied more widely to other whole-body multi-user interfaces, could instil similar positive effects.