52 resultados para Hemoglobin A2
Resumo:
An investigation to characterize the causes of Pinna nobilis population structure in Moraira bay (Western Mediterranean) was developed. Individuals of two areas of the same Posidonia meadow, located at different depths (A1, -13 and A2, -6 m), were inventoried, tagged, their positions accurately recorded and monitored from July 1997 to July 2002. On each area, different aspects of population demography were studied (i.e. spatial distribution, size structure, displacement evidences, mortality, growth and shell orientation). A comparison between both groups of individuals was carried out, finding important differences between them. In A1, the individuals were more aggregated and mean and maximum size were higher (A1, 10.3 and A2, 6 individuals/100 m(2); A1, x = 47.2 +/- 9.9; A2, x = 29.8 +/- 7.4 cm, P < 0.001, respectively). In A2, growth rate and mortality were higher, the latter concentrated on the largest individuals, in contrast to A1, where the smallest individuals had the higher mortality rate [A1, L = 56.03(1 - e(-0.17t)); A2, L = 37.59(1 - e(-0.40t)), P < 0.001; mean annual mortality A1: 32 dead individuals out of 135, 23.7% and A2: 16 dead individuals out of 36, 44.4%, and total mortality coefficients (z), z(A1(-30)) = 0.28, z(A1(31-45)) = 0.05, z(A1(46-)) = 0.08; z(A2(-30)) = 0.15, z(A2(31-45)) = 0.25]. A common shell orientation N-S, coincident with the maximum shore exposure, was observed in A2. Spatial distribution in both areas showed not enough evidence to discard a random distribution of the individuals, despite the greater aggregation on the deeper area (A1) (A1, chi(2) = 0.41, df = 3, P > 0.5, A2, chi(2)= 0.98, df = 2 and 0.3 < P < 0.5). The obtained results have demonstrated that the depth-related size segregation usually shown by P. nobilis is mainly caused by differences in mortality and growth among individuals located at different depths, rather than by the active displacement of individuals previously reported in the literature. Furthermore, dwarf individuals are observed in shallower levels and as a consequence, the relationship between size and age are not comparable even among groups of individuals inhabiting the same meadow at different depths. The final causes of the differences on mortality and growth are also discussed.
Resumo:
Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.
Resumo:
Blood cells participate in vital physiological processes, and their numbers are tightly regulated so that homeostasis is maintained. Disruption of key regulatory mechanisms underlies many blood-related Mendelian diseases but also contributes to more common disorders, including atherosclerosis. We searched for quantitative trait loci (QTL) for hematology traits through a whole-genome association study, because these could provide new insights into both hemopoeitic and disease mechanisms. We tested 1.8 million variants for association with 13 hematology traits measured in 6015 individuals from the Australian and Dutch populations. These traits included hemoglobin composition, platelet counts, and red blood cell and white blood cell indices. We identified three regions of strong association that, to our knowledge, have not been previously reported in the literature. The first was located in an intergenic region of chromosome 9q31 near LPAR1, explaining 1.5% of the variation in monocyte counts (best SNP rs7023923, p=8.9x10(-14)). The second locus was located on chromosome 6p21 and associated with mean cell erythrocyte volume (rs12661667, p=1.2x10(-9), 0.7% variance explained) in a region that spanned five genes, including CCND3, a member of the D-cyclin gene family that is involved in hematopoietic stem cell expansion. The third region was also associated with erythrocyte volume and was located in an intergenic region on chromosome 6q24 (rs592423, p=5.3x10(-9), 0.6% variance explained). All three loci replicated in an independent panel of 1543 individuals (p values=0.001, 9.9x10(-5), and 7x10(-5), respectively). The identification of these QTL provides new opportunities for furthering our understanding of the mechanisms regulating hemopoietic cell fate.
Resumo:
We report a genome-wide association study to iron status. We identify an association of SNPs in TPMRSS6 to serum iron (rs855791, combined P = 1.5 x 10(-20)), transferrin saturation (combined P = 2.2 x 10(-23)) and erythrocyte mean cell volume (MCV, combined P = 1.1 x 10(-10)). We also find suggestive evidence of association with blood hemoglobin levels (combined P = 5.3 x 10(-7)). These findings demonstrate the involvement of TMPRSS6 in control of iron homeostasis and in normal erythropoiesis.
Resumo:
The discovery of genetic factors that contribute to schizophrenia susceptibility is a key challenge in understanding the etiology of this disease. Here, we report the identification of a novel schizophrenia candidate gene on chromosome 1q32, plexin A2 (PLXNA2), in a genome-wide association study using 320 patients with schizophrenia of European descent and 325 matched controls. Over 25,000 single-nucleotide polymorphisms (SNPs) located within approximately 14,000 genes were tested. Out of 62 markers found to be associated with disease status, the most consistent finding was observed for a candidate locus on chromosome 1q32. The marker SNP rs752016 showed suggestive association with schizophrenia (odds ratio (OR) = 1.49, P = 0.006). This result was confirmed in an independent case-control sample of European Americans (combined OR = 1.38, P = 0.035) and similar genetic effects were observed in smaller subsets of Latin Americans (OR = 1.26) and Asian Americans (OR = 1.37). Supporting evidence was also obtained from two family-based collections, one of which reached statistical significance (OR = 2.2, P = 0.02). High-density SNP mapping showed that the region of association spans approximately 60 kb of the PLXNA2 gene. Eight out of 14 SNPs genotyped showed statistically significant differences between cases and controls. These results are in accordance with previous genetic findings that identified chromosome 1q32 as a candidate region for schizophrenia. PLXNA2 is a member of the transmembrane semaphorin receptor family that is involved in axonal guidance during development and may modulate neuronal plasticity and regeneration. The PLXNA2 ligand semaphorin 3A has been shown to be upregulated in the cerebellum of individuals with schizophrenia. These observations, together with the genetic results, make PLXNA2 a likely candidate for the 1q32 schizophrenia susceptibility locus.
Resumo:
Glycosaminoglycans (GAGs) are complex highly charged linear polysaccharides that have a variety of roles in biological processes. We report the first use of molecular dynamics (MD) free energy calculations using the MM/PBSA method to investigate the binding of GAGs to protein molecules, namely the platelet endothelial cell adhesion molecule 1 (PECAM-1) and annexin A2. Calculations of the free energy of the binding of heparin fragments of different sizes reveal the existence of a region of low GAG-binding affinity in domains 5-6 of PECAM-1 and a region of high affinity in domains 2-3, consistent with experimental data and ligand-protein docking studies. A conformational hinge movement between domains 2 and 3 was observed, which allows the binding of heparin fragments of increasing size (pentasaccharides to octasaccharides) with an increasingly higher binding affinity. Similar simulations of the binding of a heparin fragment to annexin A2 reveal the optimization of electrostatic and hydrogen bonding interactions with the protein and protein-bound calcium ions. In general, these free energy calculations reveal that the binding of heparin to protein surfaces is dominated by strong electrostatic interactions for longer fragments, with equally important contributions from van der Waals interactions and vibrational entropy changes, against a large unfavorable desolvation penalty due to the high charge density of these molecules.
Resumo:
The aim of this paper is to provide a Bayesian formulation of the so-called magnitude-based inference approach to quantifying and interpreting effects, and in a case study example provide accurate probabilistic statements that correspond to the intended magnitude-based inferences. The model is described in the context of a published small-scale athlete study which employed a magnitude-based inference approach to compare the effect of two altitude training regimens (live high-train low (LHTL), and intermittent hypoxic exposure (IHE)) on running performance and blood measurements of elite triathletes. The posterior distributions, and corresponding point and interval estimates, for the parameters and associated effects and comparisons of interest, were estimated using Markov chain Monte Carlo simulations. The Bayesian analysis was shown to provide more direct probabilistic comparisons of treatments and able to identify small effects of interest. The approach avoided asymptotic assumptions and overcame issues such as multiple testing. Bayesian analysis of unscaled effects showed a probability of 0.96 that LHTL yields a substantially greater increase in hemoglobin mass than IHE, a 0.93 probability of a substantially greater improvement in running economy and a greater than 0.96 probability that both IHE and LHTL yield a substantially greater improvement in maximum blood lactate concentration compared to a Placebo. The conclusions are consistent with those obtained using a ‘magnitude-based inference’ approach that has been promoted in the field. The paper demonstrates that a fully Bayesian analysis is a simple and effective way of analysing small effects, providing a rich set of results that are straightforward to interpret in terms of probabilistic statements.