402 resultados para Heat warning system


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction and objectives Early recognition of deteriorating patients results in better patient outcomes. Modified early warning scores (MEWS) attempt to identify deteriorating patients early so timely interventions can occur thus reducing serious adverse events. We compared frequencies of vital sign recording 24 h post-ICU discharge and 24 h preceding unplanned ICU admission before and after a new observation chart using MEWS and an associated educational programme was implemented into an Australian Tertiary referral hospital in Brisbane. Design Prospective before-and-after intervention study, using a convenience sample of ICU patients who have been discharged to the hospital wards, and in patients with an unplanned ICU admission, during November 2009 (before implementation; n = 69) and February 2010 (after implementation; n = 70). Main outcome measures Any change in a full set or individual vital sign frequency before-and-after the new MEWS observation chart and associated education programme was implemented. A full set of vital signs included Blood pressure (BP), heart rate (HR), temperature (T°), oxygen saturation (SaO2) respiratory rate (RR) and urine output (UO). Results After the MEWS observation chart implementation, we identified a statistically significant increase (210%) in overall frequency of full vital sign set documentation during the first 24 h post-ICU discharge (95% CI 148, 288%, p value <0.001). Frequency of all individual vital sign recordings increased after the MEWS observation chart was implemented. In particular, T° recordings increased by 26% (95% CI 8, 46%, p value = 0.003). An increased frequency of full vital sign set recordings for unplanned ICU admissions were found (44%, 95% CI 2, 102%, p value = 0.035). The only statistically significant improvement in individual vital sign recordings was urine output, demonstrating a 27% increase (95% CI 3, 57%, p value = 0.029). Conclusions The implementation of a new MEWS observation chart plus a supporting educational programme was associated with statistically significant increases in frequency of combined and individual vital sign set recordings during the first 24 h post-ICU discharge. There were no significant changes to frequency of individual vital sign recordings in unplanned admissions to ICU after the MEWS observation chart was implemented, except for urine output. Overall increases in the frequency of full vital sign sets were seen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigates a pilot desalination system which consists of a direct expansion solar assisted heat pump (DXSAHP) coupled to a single-effect evaporator unit. The working fluid used is R134a and distillate is obtained via falling film evaporation and flashing in the unit. Experiments have been conducted in both day and night meteorological conditions in Singapore and the effects of solar irradiation and compressor speed have been studied against the system performance. From the experiments, the Performance Ratio (PR) obtained ranges from 0.43 to 0.88, the average Coefficient of Performance (COP) was 8 and the highest distillate production recorded was 1.38 kg/h

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of vision sensors (as opposed to radar and TCAS). This paper describes the development and evaluation of a real-time vision-based collision detection system suitable for fixed-wing aerial robotics. Using two fixed-wing UAVs to recreate various collision-course scenarios, we were able to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. This type of image data is extremely scarce and was invaluable in evaluating the detection performance of two candidate target detection approaches. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We overcame the challenge of achieving real-time computational speeds by exploiting the parallel processing architectures of graphics processing units found on commercially-off-the-shelf graphics devices. Our chosen GPU device suitable for integration onto UAV platforms can be expected to handle real-time processing of 1024 by 768 pixel image frames at a rate of approximately 30Hz. Flight trials using manned Cessna aircraft where all processing is performed onboard will be conducted in the near future, followed by further experiments with fully autonomous UAV platforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximately 20 years have passed now since the NTSB issued its original recommendation to expedite development, certification and production of low-cost proximity warning and conflict detection systems for general aviation [1]. While some systems are in place (TCAS [2]), ¡¨see-and-avoid¡¨ remains the primary means of separation between light aircrafts sharing the national airspace. The requirement for a collision avoidance or sense-and-avoid capability onboard unmanned aircraft has been identified by leading government, industry and regulatory bodies as one of the most significant challenges facing the routine operation of unmanned aerial systems (UAS) in the national airspace system (NAS) [3, 4]. In this thesis, we propose and develop a novel image-based collision avoidance system to detect and avoid an upcoming conflict scenario (with an intruder) without first estimating or filtering range. The proposed collision avoidance system (CAS) uses relative bearing ƒÛ and angular-area subtended ƒê , estimated from an image, to form a test statistic AS C . This test statistic is used in a thresholding technique to decide if a conflict scenario is imminent. If deemed necessary, the system will command the aircraft to perform a manoeuvre based on ƒÛ and constrained by the CAS sensor field-of-view. Through the use of a simulation environment where the UAS is mathematically modelled and a flight controller developed, we show that using Monte Carlo simulations a probability of a Mid Air Collision (MAC) MAC RR or a Near Mid Air Collision (NMAC) RiskRatio can be estimated. We also show the performance gain this system has over a simplified version (bearings-only ƒÛ ). This performance gain is demonstrated in the form of a standard operating characteristic curve. Finally, it is shown that the proposed CAS performs at a level comparable to current manned aviations equivalent level of safety (ELOS) expectations for Class E airspace. In some cases, the CAS may be oversensitive in manoeuvring the owncraft when not necessary, but this constitutes a more conservative and therefore safer, flying procedures in most instances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inter-Vehicular Communications (IVC) are considered a promising technological approach for enhancing transportation safety and improving highway efficiency. Previous theoretical work has demonstrated the benefits of IVC in vehicles strings. Simulations of partially IVC-equipped vehicles strings showed that only a small equipment ratio is sufficient to drastically reduce the number of head on collisions. However, these results are based on the assumptions that IVC exhibit lossless and instantaneous messages transmission. This paper presents the research design of an empirical measurement of a vehicles string, with the goal of highlighting the constraints introduced by the actual characteristics of communication devices. A warning message diffusion system based on IEEE 802.11 wireless technology was developed for an emergency breaking scenario. Preliminary results are presented as well, showing the latencies introduced by using 802.11a and discussing early findings and experimental limitations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Buildings are one of the most significant infrastructures in modern societies. The construction and operation of modern buildings consume a considerable amount of energy and materials, therefore contribute significantly to the climate change process. In order to reduce the environmental impact of buildings, various green building rating tools have been developed. In this paper, energy uses of the building sector in Australia and over the world are first reviewed. This is then followed by discussions on the development and scopes of various green building rating tools, with a particular focus on the Green Star rating scheme developed in Australia. It is shown that Green Star has significant implications on almost every aspect of the design of HVAC systems, including the selection of air handling and distribution systems, fluid handling systems, refrigeration systems, heat rejection systems and building control systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study demonstrates the possibility of using an absorption chiller to produce chilled water for air conditioning, and at the same time recover the rejected heat producing domestic hot water. The absorption chiller considered for this application has been sized to suit a standard household and uses a solution of ammonia and water running on hot water at a temperature ranging from 80 - 120°C produced by thermal solar panels. The system consists of five main components: generator, rectifier, condenser, evaporator and absorber, and is divided in two sections at two different pressures. The section at higher pressure includes the generator, rectifier and condenser whereas the section at lower pressure includes the evaporator and the absorber. Heat in this type of system is usually rejected to the environment from the condenser, rectifier and absorber through a cooling tower or air cooler exchanger. In this paper we describe how to recover this heat to create domestic hot water by providing a quantitative evaluation of the amount of energy recovered by the proposed system, if used in the Australian region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hong Kong in summer (June - October) is hot and humid. Construction workers have to undertake physically demanding activities and often in confined spaces. They are vulnerable to heat stress in summer hence health and safety measures associated to heat stress measured by scientific and clinical parameters are urgently needed. This paper provides an initial report of a research project funded by the Research Grants Council (RGC) of the HKSAR. The aim of this study is to develop a set of indices measured by clinical and scientific methods to detect impending attacks of heat stress. These indices would be of tremendous value in better safeguarding workers’ health and safety by reducing the occurrences of heat stress on site. This paper firstly reports on the statistics of construction incidents arising from heat stress. Qualitative and quantitative research methods applied in conducting the research are discussed. It is believed that the construction industry and the government would benefit a lot as a result of this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sorghum (Sorghum bicolor (L.) Moench) is the world’s fifth major cereal crop and holds importance as a construction material, food and fodder source. More recently, the potential of this plant as a biofuel source has been noted. Despite its agronomic importance, the use of sorghum production is being constrained by both biotic and abiotic factors. These challenges could be addressed by the use of genetic engineering strategies to complement conventional breeding techniques. However, sorghum is one of the most recalcitrant crops for genetic modification with the lack of an efficient tissue culture system being amongst the chief reasons. Therefore, the aim of this study was to develop an efficient tissue culture system for establishing regenerable embryogenic cell lines, micropropagation and acclimatisation for Sorghum bicolor and use this to optimise parameters for genetic transformation via Agrobacterium-mediated transformation and microprojectile bombardment. Using five different sorghum cultivars, SA281, 296B, SC49, Wray and Rio, numerous parameters were investigated in an attempt to establish an efficient and reproducible tissue culture and transformation system. Using immature embryos (IEs) as explants, regenerable embryogenic cell lines (ECLs) could only be established from cultivars SA281 and 296B. Large amounts of phenolics were produced from IEs of cultivars, SC49, Wary and Rio, and these compounds severely hindered callus formation and development. Cultivar SA281 also produced phenolics during regeneration. Attempts to suppress the production of these compounds in cultivars SA281 and SC49 using activated charcoal, PVP, ascorbic acid, citric acid and liquid filter paper bridge methods were either ineffective or had a detrimental effect on embryogenic callus formation, development and regeneration. Immature embryos sourced during summer were found to be far more responsive in vitro than those sourced during winter. In an attempt to overcome this problem, IEs were sourced from sorghum grown under summer conditions in either a temperature controlled glasshouse or a growth chamber. However, the performance of these explants was still inferior to that of natural summer-sourced explants. Leaf whorls, mature embryos, shoot tips and leaf primordia were found to be unsuitable as explants for establishing ECLs in sorghum cultivars SA281 and 296B. Using the florets of immature inflorescences (IFs) as explants, however, ECLs were established and regenerated for these cultivars, as well as for cultivar Tx430, using callus induction media, SCIM, and regeneration media, VWRM. The best in vitro responses, from the largest possible sized IFs, were obtained using plants at the FL-2 stage (where the last fully opened leaf was two leaves away from the flag leaf). Immature inflorescences could be stored at 25oC for up to three days without affecting their in vitro responses. Compared to IEs, the IFs were more robust in tissue culture and showed responses which were season and growth condition independent. A micropropagation protocol for sorghum was developed in this study. The optimum plant growth regulator (PGR) combination for the micropropagation of in vitro regenerated plantlets was found to be 1.0 mg/L BAP in combination with 0.5 mg/L NAA. With this protocol, cultivars 296B and SA281 produced an average of 57 and 13 off-shoots per plantlet, respectively. The plantlets were successfully acclimatised and developed into phenotypically normal plants that set seeds. A simplified acclimatisation protocol for in vitro regenerated plantlets was also developed. This protocol involved deflasking in vitro plantlets with at least 2 fully-opened healthy leaves and at least 3 roots longer than 1.5 cm, washing the media from the roots with running tap water, planting in 100 mm pots and placing in plastic trays covered with a clear plastic bag in a plant growth chamber. After seven days, the corners of the plastic cover were opened and the bags were completely removed after 10 days. All plantlets were successfully acclimatised regardless of whether 1:1 perlite:potting mix, potting mix, UC mix or vermiculite were used as potting substrates. Parameters were optimised for Agrobacterium-mediated transformation (AMT) of cultivars SA281, 296B and Tx430. The optimal conditions were the use of Agrobacterium strain LBA4404 at an inoculum density of 0.5 OD600nm, heat shock at 43oC for 3 min, use of the surfactant Pluronic F-68 (0.02% w/v) in the inoculation media with a pH of 5.2 and a 3 day co-cultivation period in dark at 22oC. Using these parameters, high frequencies of transient GFP expression was observed in IEs precultured on callus initiation media for 1-7 days as well as in four weeks old IE- and IF-derived callus. Cultivar SA281 appeared very sensitive to Agrobacterium since all tissue turned necrotic within two weeks post-exposure. For cultivar 296B, GFP expression was observed up to 20 days post co-cultivation but no stably transformed plants were regenerated. Using cultivar Tx430, GFP was expressed for up to 50 days post co-cultivation. Although no stably transformed plants of this cultivar were regenerated, this was most likely due to the use of unsuitable regeneration media. Parameters were optimised for transformation by particle bombardment (PB) of cultivars SA281, 296B and Tx430. The optimal conditions were use of 3-7 days old IEs and 4 weeks old IF callus, 4 hour pre- and post-bombardment osmoticum treatment, use of 0.6 µm gold microparticles, helium pressure of 1500 kPa and target distance of 15 cm. Using these parameters for PB, transient GFP expression was observed for up to 14, 30 and 50 days for cultivars SA281, 296B and Tx430, respectively. Further, the use of PB resulted in less tissue necrosis compared to AMT for the respective cultivars. Despite the presence of transient GFP expression, no stably transformed plants were regenerated. The establishment of regenerable ECLs and the optimization of AMT and PB parameters in this study provides a platform for future efforts to develop an efficient transformation protocol for sorghum. The development of GM sorghum will be an important step towards improving its agronomic properties as well as its exploitation for biofuel production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined physiological and performance effects of pre-cooling on medium-fast bowling in the heat. Ten, medium-fast bowlers completed two randomised trials involving either cooling (mixed-methods) or control (no cooling) interventions before a 6-over bowling spell in 31.9±2.1°C and 63.5±9.3% relative humidity. Measures included bowling performance (ball speed, accuracy and run-up speeds), physical characteristics (global positioning system monitoring and counter-movement jump height), physiological (heart rate, core temperature, skin temperature and sweat loss), biochemical (serum concentrations of damage, stress and inflammation) and perceptual variables (perceived exertion and thermal sensation). Mean ball speed (114.5±7.1 vs. 114.1±7.2 km · h−1; P = 0.63; d = 0.09), accuracy (43.1±10.6 vs. 44.2±12.5 AU; P = 0.76; d = 0.14) and total run-up speed (19.1±4.1 vs. 19.3±3.8 km · h−1; P = 0.66; d = 0.06) did not differ between pre-cooling and control respectively; however 20-m sprint speed between overs was 5.9±7.3% greater at Over 4 after pre-cooling (P = 0.03; d = 0.75). Pre-cooling reduced skin temperature after the intervention period (P = 0.006; d = 2.28), core temperature and pre-over heart rates throughout (P = 0.01−0.04; d = 0.96−1.74) and sweat loss by 0.4±0.3 kg (P = 0.01; d = 0.34). Mean rating of perceived exertion and thermal sensation were lower during pre-cooling trials (P = 0.004−0.03; d = 0.77−3.13). Despite no observed improvement in bowling performance, pre-cooling maintained between-over sprint speeds and blunted physiological and perceptual demands to ease the thermoregulatory demands of medium-fast bowling in hot conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Twenty first century learners operate in organic, immersive environments. A pedagogy of student-centred learning is not a recipe for rooms. A contemporary learning environment is like a landscape that grows, morphs, and responds to the pressures of the context and micro-culture. There is no single adaptable solution, nor a suite of off-the-shelf answers; propositions must be customisable and infinitely variable. They must be indeterminate and changeable; based on the creation of learning places, not restrictive or constraining spaces. A sustainable solution will be un-fixed, responsive to the life cycle of the components and materials, able to be manipulated by the users; it will create and construct its own history. Learning occurs as formal education with situational knowledge structures, but also as informal learning, active learning, blended learning social learning, incidental learning, and unintended learning. These are not spatial concepts but socio-cultural patterns of discovery. Individual learning requirements must run free and need to be accommodated as the learner sees fit. The spatial solution must accommodate and enable a full array of learning situations. It is a system not an object. Three major components: 1. The determinate landscape: in-situ concrete 'plate' that is permanent. It predates the other components of the system and remains as a remnant/imprint/fossil after the other components of the system have been relocated. It is a functional learning landscape in its own right; enabling a variety of experiences and activities. 2. The indeterminate landscape: a kit of pre-fabricated 2-D panels assembled in a unique manner at each site to suit the client and context. Manufactured to the principles of design-for-disassembly. A symbiotic barnacle like system that attaches itself to the existing infrastructure through the determinate landscape which acts as a fast growth rhizome. A carapace of protective panels, infinitely variable to create enclosed, semi-enclosed, and open learning places. 3. The stations: pre-fabricated packages of highly-serviced space connected through the determinate landscape. Four main types of stations; wet-room learning centres, dry-room learning centres, ablutions, and low-impact building services. Entirely customised at the factory and delivered to site. The stations can be retro-fitted to suit a new context during relocation. Principles of design for disassembly: material principles • use recycled and recyclable materials • minimise the number of types of materials • no toxic materials • use lightweight materials • avoid secondary finishes • provide identification of material types component principles • minimise/standardise the number of types of components • use mechanical not chemical connections • design for use of common tools and equipment • provide easy access to all components • make component size to suite means of handling • provide built in means of handling • design to realistic tolerances • use a minimum number of connectors and a minimum number of types system principles • design for durability and repeated use • use prefabrication and mass production • provide spare components on site • sustain all assembly and material information

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in computational geodynamics are applied to explore the link between Earth’s heat, its chemistry and its mechanical behavior. Computational thermal-mechanical solutions are now allowing us to understand Earth patterns by solving the basic physics of heat transfer. This approach is currently used to solve basic convection patterns of terrestrial planets. Applying the same methodology to smaller scales delivers promising similarities between observed and predicted structures which are often the site of mineral deposits. The new approach involves a fully coupled solution to the energy, momentum and continuity equations of the system at all scales, allowing the prediction of fractures, shear zones and other typical geological patterns out of a randomly perturbed initial state. The results of this approach are linking a global geodynamic mechanical framework over regional-scale mineral deposits down to the underlying micro-scale processes. Ongoing work includes the challenge of incorporating chemistry into the formulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an approach for identifying the limit states of resilience in a water supply system when influenced by different types of pressure (disturbing) forces. Understanding of systemic resilience facilitates identification of the trigger points for early managerial action to avoid further loss of ability to provide satisfactory service availability when the ability to supply water is under pressure. The approach proposed here is to illustrate the usefulness of a surrogate measure of resilience depicted in a three dimensional space encompassing independent pressure factors. That enables visualisation of the transition of the system-state (resilience) between high to low resilience regions and acts as an early warning trigger for decision-making. The necessity of a surrogate measure arises as a means of linking resilience to the identified pressures as resilience cannot be measured directly. The basis for identifying the resilience surrogate and exploring the interconnected relationships within the complete system, is derived from a meta-system model consisting of three nested sub-systems representing the water catchment and reservoir; treatment plant; and the distribution system and end-users. This approach can be used as a framework for assessing levels of resilience in different infrastructure systems by identifying a surrogate measure and its relationship to relevant pressures acting on the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The standard method of labelling proliferating cells uses the thymidine analogue, bromodeoxyuridine (BrdU), which incorporates into the DNA during S-phase of the cell cycle. A disadvantage of this method is that the immunochemical processing requires pre-treatment of the cells and tissue with heat or acid to reveal the antigen. This pre-treatment reduces reliability of the method and degrades the specimen, reducing the ability for multiple immuno-fluorescence labelling at high resolution. We report here the utility of a novel thymidine analogue, ethynyl deoxyuridine (EdU), detected with a fluorescent azide via the “click” chemistry reaction (the Huisgen 1,3-dipolar cycloaddition reaction of an organic azide to a terminal acetylene). The detection of EdU requires no heat or acid treatment and the incorporated EdU is covalently conjugated to fluorescent probe. The reaction is quick and compatible with fluorescence immunochemistry and other fluorescent probes. We show here that EdU is non-toxic in vitro and in vivo and can be used in place of BrdU to label cells during neurogenesis and the progeny identified at least 30 days later. The fluorescent labelling of EdU, markedly improves the detection of proliferating cells and allows concurrent high resolution fluorescence immunochemistry.