54 resultados para HARVEST
Resumo:
The use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted recently as an effective method to reduce nitrous oxide (N2O) emissions from fertilised agricultural fields, whilst increasing yield and nitrogen use efficiency. Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser and consequently elevated emissions of nitrous oxide (N2O) can be expected. However, to date only limited data is available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment investigated the effect of the nitrification inhibitors (DMPP & 3MP+TZ) on N2O emissions and yield from a typical vegetable production system in sub-tropical Australia. Soil N2O fluxes were monitored continuously over an entire year with a fully automated system. Measurements were taken from three subplots for each treatment within a randomized complete blocks design. There was a significant inhibition effect of DMPP and 3MP+TZ on N2O emissions and soil mineral N content directly following the application of the fertiliser over the vegetable cropping phase. However this mitigation was offset by elevated N2O emissions from the inhibitor treatments over the post-harvest fallow period. Cumulative annual N2O emissions amounted to 1.22 kg-N/ha, 1.16 kg-N/ha, 1.50 kg-N/ha and 0.86 kg-N/ha in the conventional fertiliser (CONV), the DMPP treatment, the 3MP+TZ treatment and the zero fertiliser (0N) respectively. Corresponding fertiliser induced emission factors (EFs) were low with only 0.09 - 0.20% of the total applied fertiliser lost as N2O. There was no significant effect of the nitrification inhibitors on yield compared to the CONV treatment for the three vegetable crops (green beans, broccoli, lettuce) grown over the experimental period. This study highlights that N2O emissions from such vegetable cropping system are primarily controlled by post-harvest emissions following the incorporation of vegetable crop residues into the soil. It also shows that the use of nitrification inhibitors can lead to elevated N2O emissions by storing N in the soil profile that is available to soil microbes during the decomposition of the vegetable residues over the post-harvest phase. Hence the use of nitrification inhibitors in vegetable systems has to be treated carefully and fertiliser rates need to be adjusted to avoid excess soil nitrogen during the postharvest phase.
Resumo:
Introducing nitrogen (N)-fixing legumes into cereal-based crop rotations reduces synthetic fertiliser-N use and may mitigate soil emissions of nitrous oxide (N2O). Current IPCC calculations assume 100% of legume biomass N as the anthropogenic N input and use 1% of this as an emission factor (EF)—the percentage of input N emitted as N2O. However, legumes also utilise soil inorganic N, so legume-fixed N is typically less than 100% of legume biomass N. In two field experiments, we measured soil N2O emissions from a black Vertosol in sub-tropical Australia for 12 months after sowing of chickpea (Cicer arietinum L.), canola (Brassica napus L.), faba bean (Vicia faba L.), and field pea (Pisum sativum L.). Cumulative N2O emissions from N-fertilised canola (624 g N2O-N ha−1) greatly exceeded those from chickpea (127 g N2O-N ha−1) in Experiment 1. Similarly, N2O emitted from canola (385 g N2O-N ha−1) in Experiment 2 was significantly greater than chickpea (166 g N2O-N ha−1), faba bean (166 g N2O-N ha−1) or field pea (135 g N2O-N ha−1). Highest losses from canola were recorded during the growing season, whereas 75% of the annual N2O losses from the legumes occurred post-harvest. Legume N2-fixation provided 37–43% (chickpea), 54% (field pea) and 64% (faba bean) of total plant biomass N. Using only fixed-N inputs, we calculated EFs for chickpea (0.13–0.31%), field pea (0.18%) and faba bean (0.04%) that were significantly less than N-fertilised canola (0.48–0.78%) (P < 0.05), suggesting legume-fixed N is a less emissive form of N input to the soil than fertiliser N. Inputs of legume-fixed N should be more accurately quantified to properly gauge the potential for legumes to mitigate soil N2O emissions. EF’s from legume crops need to be revised and should include a factor for the proportion of the legume’s N derived from the atmosphere.
Resumo:
An innovative design strategy for light emitting field effect transistors (LEFETs) to harvest higher luminance and switching is presented. The strategy uses a non-planar electrode geometry in tri-layer LEFETs for simultaneous enhancement of the key parameters of quantum efficiency, brightness, switching, and mobility across the RGB color gamut.
Resumo:
This paper investigates communication protocols for relaying sensor data from animal tracking applications back to base stations. While Delay Tolerant Networks (DTNs) are well suited to such challenging environments, most existing protocols do not consider the available energy that is particularly important when tracking devices can harvest energy. This limits both the network lifetime and delivery probability in energy-constrained applications to the point when routing performance becomes worse than using no routing at all. Our work shows that substantial improvement in data yields can be achieved through simple yet efficient energy-aware strategies. Conceptually, there is need for balancing the energy spent on sensing, data mulling, and delivery of direct packets to destination. We use empirical traces collected in a flying fox (fruit bat) tracking project and show that simple threshold-based energy-aware strategies yield up to 20% higher delivery rates. Furthermore, these results generalize well for a wide range of operating conditions.
Resumo:
This chapter provides an overview of the Japanese regulatory issues regarding pesticide use in rice paddies and an introduction of the new pesticide registration program. In addition, the experience of the environmental monitoring of pesticides and the modeling approaches used for the calculation of predicted environmental concentrations (PECs) in surface water and ground water systems adjacent to rice paddies in Japan are also discussed. Japan has been one of the major pesticide users in the world. Although having a long history in rice cultivation, the pesticide exposure assessment for paddy rice production received less attention compared with EU and US. Applications of up-to-date techniques and the development of realistic assessment procedures under specific climatic conditions as well as mitigation management practices for controlling pesticide contamination are important for an environmental-friendly rice production. Through the international cooperation and research exchanges, advances in pesticide risk assessment for rice paddies in Asian region and other rice-growing areas in the world would contribute to sustainable rice production. Transplanting of rice seedlings grows almost all rice paddies in Japan. The land preparation starts around April and June, and the harvest season lasts from August to October depending on the region and the rice varieties. Most of the rice paddies are treated with herbicides and other crop protection products, such as fungicides and insecticides that are applied during the crop season accordingly. Newly developed insecticides and fungicides are also applied during seedbed preparation.
Resumo:
Reduced economic circumstances havemoved management goals towards higher profit, rather than maximum sustainable yields in several Australian fisheries. The eastern king prawn is one such fishery, for which we have developed new methodology for stock dynamics, calculation of model-based and data-based reference points and management strategy evaluation. The fishery is notable for the northward movement of prawns in eastern Australian waters, from the State jurisdiction of New South Wales to that of Queensland, as they grow to spawning size, so that vessels fishing in the northern deeper waters harvest more large prawns. Bioeconomic fishing data were standardized for calibrating a length-structured spatial operating model. Model simulations identified that reduced boat numbers and fishing effort could improve profitability while retaining viable fishing in each jurisdiction. Simulations also identified catch rate levels that were effective for monitoring in simple within-year effort-control rules. However, favourable performance of catch rate indicators was achieved only when a meaningful upper limit was placed on total allowed fishing effort. Themethods and findings will allow improved measures for monitoring fisheries and inform decision makers on the uncertainty and assumptions affecting economic indicators.
Resumo:
The phosphine distribution in a cylindrical silo containing grain is predicted. A three-dimensional mathematical model, which accounts for multicomponent gas phase transport and the sorption of phosphine into the grain kernel is developed. In addition, a simple model is presented to describe the death of insects within the grain as a function of their exposure to phosphine gas. The proposed model is solved using the commercially available computational fluid dynamics (CFD) software, FLUENT, together with our own C code to customize the solver in order to incorporate the models for sorption and insect extinction. Two types of fumigation delivery are studied, namely, fan- forced from the base of the silo and tablet from the top of the silo. An analysis of the predicted phosphine distribution shows that during fan forced fumigation, the position of the leaky area is very important to the development of the gas flow field and the phosphine distribution in the silo. If the leak is in the lower section of the silo, insects that exist near the top of the silo may not be eradicated. However, the position of a leak does not affect phosphine distribution during tablet fumigation. For such fumigation in a typical silo configuration, phosphine concentrations remain low near the base of the silo. Furthermore, we find that half-life pressure test readings are not an indicator of phosphine distribution during tablet fumigation.
Resumo:
It has been said that we are living in a golden age of innovation. New products, systems and services aimed to enable a better future, have emerged from novel interconnections between design and design research with science, technology and the arts. These intersections are now, more than ever, catalysts that enrich daily activities for health and safety, education, personal computing, entertainment and sustainability, to name a few. Interactive functions made possible by new materials, technology, and emerging manufacturing solutions demonstrate an ongoing interplay between cross-disciplinary knowledge and research. Such interactive interplay bring up questions concerning: (i) how art and design provide a focus for developing design solutions and research in technology; (ii) how theories emerging from the interactions of cross-disciplinary knowledge inform both the practice and research of design and (iii) how research and design work together in a mutually beneficial way. The IASDR2015 INTERPLAY EXHIBITION provides some examples of these interconnections of design research with science, technology and the arts. This is done through the presentation of objects, artefacts and demonstrations that are contextualised into everyday activities across various areas including health, education, safety, furniture, fashion and wearable design. The exhibits provide a setting to explore the various ways in which design research interacts across discipline knowledge and approaches to stimulate innovation. In education, Designing South African Children’s Health Education as Generative Play (A Bennett, F Cassim, M van der Merwe, K van Zijil, and M Ribbens) presents a set of toolkits that resulted from design research entailing generative play. The toolkits are systems that engender pleasure and responsibility, and are aimed at cultivating South African’s youth awareness of nutrition, hygiene, disease awareness and prevention, and social health. In safety, AVAnav: Avalanche Rescue Helmet (Jason Germany) delivers an interactive system as a tool to contribute to reduce the time to locate buried avalanche victims. Helmet-mounted this system responds to the contextual needs of rescuers and has since led to further design research on the interface design of rescuing devices. In apparel design and manufacturing, Shrinking Violets: Fashion design for disassembly (Alice Payne) proposes a design for disassembly through the use of beautiful reversible mono-material garments that interactively responds to the challenges of garment construction in the fashion industry, capturing the metaphor for the interplay between technology and craft in the fashion manufacturing industry. Harvest: A biotextile future (Dean Brough and Alice Payne), explores the interplay of biotechnology, materiality and textile design in the creation of sustainable, biodegradable vegan textile through the process of a symbiotic culture of bacteria and yeast (SCOBY). SCOBY is a pellicle curd that can be harvested, machine washed, dried and cut into a variety of designs and texture combinations. The exploration of smart materials, wearable design and micro-electronics led to creative and aesthetically coherent stimulus-reactive jewellery; Symbiotic Microcosms: Crafting Digital Interaction (K Vones). This creation aims to bridge the gap between craft practitioner and scientific discovery, proposing a move towards the notion of a post-human body, where wearable design is seen as potential ground for new human-computer interactions, affording the development of visually engaging multifunctional enhancements. In furniture design, Smart Assistive chair for older adults (Chao Zhao) demonstrates how cross-disciplinary knowledge interacting with design strategies provide solution that employed new technological developments in older aged care, and the participation of multiple stakeholders: designers, health care system and community based health systems. In health, Molecular diagnosis system for newborns deafness genetic screening (Chao Zhao) presents an ambitious and complex project that includes a medical device aimed at resolving a number of challenges: technical feasibility for city and rural contexts, compatibility with standard laboratory and hospital systems, access to health system, and support the work of different hospital specialists. The interplay between cross-disciplines is evident in this work, demonstrating how design research moves forward through technology developments. These works exemplify the intersection between domains as a means to innovation. Novel design problems are identified as design intersects with the various areas. Research informs this process, and in different ways. We see the background investigation into the contextualising domain (e.g. on-snow studies, garment recycling, South African health concerns, the post human body) to identify gaps in the area and design criteria; the technologies and materials reviews (e.g. AR, biotextiles) to offer plausible technical means to solve these, as well as design criteria. Theoretical reviews can also inform the design (e.g. play, flow). These work together to equip the design practitioner with a robust set of ‘tools’ for design innovation – tools that are based in research. The process identifies innovative opportunity and criteria for design and this, in turn, provides a means for evaluating the success of the design outcomes. Such an approach has the potential to come full circle between research and design – where the design can function as an exemplar, evidencing how the research-articulated problems can be solved. Core to this, however, is the evaluation of the design outcome itself and identifying knowledge outcomes. In some cases, this is fairly straightforward that is, easily measurable. For example the efficacy of Jason Germany’s helmet can be determined by measuring the reduced response time in the rescuer. Similarly the improved ability to recycle Payne’s panel garments can be clearly determined by comparing it to those recycling processes (and her identified criteria of separating textile elements!); while the sustainability and durability of the Brough & Payne’s biotextile can be assessed by documenting the growth and decay processes, or comparative strength studies. There are however situations where knowledge outcomes and insights are not so easily determined. Many of the works here are open-ended in their nature, as they emphasise the holistic experience of one or more designs, in context: “the end result of the art activity that provides the health benefit or outcome but rather, the value lies in the delivery and experience of the activity” (Bennet et al.) Similarly, reconfiguring layers of laser cut silk in Payne’s Shrinking Violets constitutes a customisable, creative process of clothing oneself since it “could be layered to create multiple visual effects”. Symbiotic Microcosms also has room for facilitating experience, as the work is described to facilitate “serendipitous discovery”. These examples show the diverse emphasis of enquiry as on the experience versus the product. Open-ended experiences are ambiguous, multifaceted and differ from person to person and moment to moment (Eco 1962). Determining the success is not always clear or immediately discernible; it may also not be the most useful question to ask. Rather, research that seeks to understand the nature of the experience afforded by the artefact is most useful in these situations. It can inform the design practitioner by helping them with subsequent re-design as well as potentially being generalizable to other designers and design contexts. Bennett et. al exemplify how this may be approached from a theoretical perspective. This work is concerned with facilitating engaging experiences to educate and, ultimately impact on that community. The research is concerned with the nature of that experience as well, and in order to do so the authors have employed theoretical lenses – here these are of flow, pleasure, play. An alternative or complementary approach to using theory, is using qualitative studies such as interviews with users to ask them about what they experienced? Here the user insights become evidence for generalising across, potentially revealing insight into relevant concerns – such as the range of possible ‘playful’ or experiences that may be afforded, or the situation that preceded a ‘serendipitous discovery’. As shown, IASDR2015 INTERPLAY EXHIBITION provides a platform for exploration, discussion and interrogation around the interplay of design research across diverse domains. We look forward with excitement as IASDR continues to bring research and design together, and as our communities of practitioners continue to push the envelope of what is design and how this can be expanded and better understood with research to foster new work and ultimately, stimulate innovation.
Resumo:
FRDC project 2008/306 Building economic capability to improve the management of marine resources in Australia was developed and approved in response to the widespread recognition and acknowledgement of the importance of incorporating economic considerations into marine management in Australia and of the persistent undersupply of suitably trained and qualified individuals capable of providing this input. The need to address this shortfall received broad based support and following widespread stakeholder consultation and building on previous unsuccessful State-based initiatives, a collaborative, cross-jurisdictional cross-institutional capability building model was developed. The resulting project sits within the People Development Program as part of FRDC’s ‘investment in RD&E to develop the capabilities of the people to whom the industry entrusts its future’, and has addressed its objectives largely through three core activities: 1. The Fisheries Economics Graduate Research Training Program which provides research training in fisheries/marine economics through enrolment in postgraduate higher degree studies at the three participating Universities; 2. The Fisheries Economics Professional Training Program which aims to improve the economic literacy of non-economist marine sector stakeholders and was implemented in collaboration with the Seafood Cooperative Research Centre through the Future Harvest Masterclass in Fisheries Economics; and, 3. The Australian Fisheries Economics Network (FishEcon) which aims to strengthen research in the area of fisheries economics by creating a forum in which fisheries economists, fisheries managers and Ph.D. students can share research ideas and results, as well as news of upcoming research opportunities and events. These activities were undertaken by a core Project team, comprising economic researchers and teachers from each of the four participating institutions (namely the University of Tasmania, the University of Adelaide, Queensland University of Technology and the Commonwealth Scientific and Industrial Research Organisation), spanning three States and the Commonwealth. The Project team reported to and was guided by a project Steering Committee. Commensurate with the long term nature of the project objectives and some of its activities the project was extended (without additional resources) in 2012 to 30th June 2015.