404 resultados para Experimental Pedagogy
Resumo:
Theories on teaching and learning for adult learners are constantly being reviewed and discussed in the higher educational environment. Theories are not static and appear to be in a constant developmental process. This paper discusses three of these theories: pedagogy, andragogy and heutagogy. It is argued that although educators engage in many of the principles of either student-centered (andragogy) and self-determined (heutagogy) learning, it is not possible to fully implement either theory. The two main limitations are the requirements of both internal and external stakeholders, such as accrediting bodies and requirements to assess all student learning. A reversion to teacher-centered learning (pedagogy) ensues. In summary, we engage in many action-oriented learning activities but revert to teacher-centered approaches in terms of content and assessment.
Resumo:
This chapter is interested in the difference between local places with implicit codes and more global spaces with explicit directions, through the case study of the design and conduct of assessment in an online internationalized MBA unit. Online learning is understood to offer new ways of belonging in 'postnational' communities less reliant on locality for their frames of reference. This study reports and analyses firstly a series of troubles which erupted over the international students' desire for more explication of the desired genre for their assessment task. Then it analyses the different, 'autoethnographic' genre structure that emerged when students started to acknowledge the diverse backgrounds within the class.The chapter then offers practical considerations for the design of online internationalized programs.
Resumo:
Industries demand a closer alignment of university learning curriculum to real work tasks to better meet the needs of organizations and learners. Both, industries and learners prefer the learning challenges to be based on the exigencies of work to precisely reflect real work circumstances that overtly add to business outcomes. However, such alignment is often complicated and challenging for academics and workplace managers alike. It demands partnerships between universities and industries, similar to arrangements forged for the vocational education and training sector. Such partnerships should allow active participation by learners, academics, workplaces and university administrators to move beyond a teaching orientation to a demonstrably effective learning arrangement through work integrated learning. This paper draws on a case study that negotiated a partnership between a non-government organization and an Australian university to design and facilitate a boutique curriculum that met the needs of learners and their workplace. Data were collected from interviews with participants, a focus group of the interviewees, and feedback from university staff involved in the course delivery. The paper presents a set of principles for universities and industries for partnership to enhance the alignment of academic curriculum to meet organizational and individual learning needs through work integrated learning.
Resumo:
This study utilises a mexed design laboratory experiment to test the impact of differential reporting on one group of external financial report users-lenders. The results indicate that the judgments of bank loan officers' assessment of the ability of a borrower to repay, are not significantly affected by differential reporting (in this case, presentation on non-GAAP financial reports compared to GAAP financial reports). However, bankers request additional information from borrowers when non-GAAP financial reports are presented.
Resumo:
Nonlinear Dynamics, provides a framework for understanding how teaching and learning processes function in Teaching Games for Understanding (TGfU). In Nonlinear Pedagogy, emergent movement behaviors in learners arise as a consequence of intrinsic self-adjusted processes shaped by interacting constraints in the learning environment. In a TGfU setting, representative, conditioned games provide ideal opportunities for pedagogists to manipulate key constraints so that self-adjusted processes by players lead to emergent behaviors as they explore functional movement solutions. The implication is that, during skill learning, functional movement variability is necessary as players explore different motor patterns for effective skill execution in the context of the game. Learning progressions in TGfU take into account learners’ development through learning stages and have important implications for organisation of practices, instructions and feedback. A practical application of Nonlinear Pedagogy in a national sports institute is shared to exemplify its relevance for TGfU practitioners.
Resumo:
Total deposition of petrol, diesel and environmental tobacco smoke (ETS) aerosols in the human respiratory tract for nasal breathing conditions was computed for 14 nonsmoking volunteers, considering the specific anatomical and respiratory parameters of each volunteer and the specific size distribution for each inhalation experiment. Theoretical predictions were 34.6% for petrol, 24.0% for diesel, and 18.5% for ETS particles. Compared to the experimental results, predicted deposition values were consistently smaller than the measured data (41.4% for petrol, 29.6% for diesel, and 36.2% for ETS particles). The apparent discrepancy between experimental data on total deposition and modeling results may be reconciled by considering the non-spherical shape of the test aerosols by diameter-dependent dynamic shape factors to account for differences between mobility-equivalent and volume-equivalent or thermodynamic diameters. While the application of dynamic shape factors is able to explain the observed differences for petrol and diesel particles, additional mechanisms may be required for ETS particle deposition, such as the size reduction upon inspiration by evaporation of volatile compounds and/or condensation-induced restructuring, and, possibly, electrical charge effects.
Resumo:
26 tinnitus patients received either electromyogram (EMG) biofeedback with counterdemand instructions, EMG biofeedback with neutral demand instructions, or no treatment. Assessment was conducted on self-report measures of the distress associated with tinnitus, the loudness, annoyance and awareness of tinnitus, sleep-onset difficulties, depression, and anxiety. Audiological assessment of tinnitus was also conducted and EMG levels were measured (the latter only in the 2 treatment groups). No significant treatment effects were found on any of the measures. There was a significant decrease in the ratings of tinnitus awareness over the assessment occasions, but the degree of change was equivalent for treated and untreated groups. Results do not support the assertion that EMG biofeedback is an effective treatment for tinnitus.
Resumo:
Crucial to enhancing the status and quality of games teaching in schools is a developed understanding of the teaching strategies adopted by practitioners. In this paper, we will demonstrate that contemporary games‟ teaching is a product of individual, task and environmental constraints (Newell, 1986). More specifically, we will show that current pedagogy in the U.K., Australia and the United States is strongly influenced by historical, socio-cultural environmental and political constraints. In summary, we will aim to answer the question „why do teachers teach games the way they do.‟ In answering this question, we conclude that teacher educators, who are trying to influence pedagogical practice, must understand these potential constraints and provide appropriate pre-service experiences to give future physical education teachers the knowledge, confidence and ability to adopt a range of teaching styles when they become fully fledged teachers. Essential to this process is the need to enable future practitioners to base their pedagogical practice on a sound understanding of contemporary learning theories of skill acquisition.
Resumo:
The arrival of substantial cohorts of English language learners from Africa with little, no or severely interrupted schooling is requiring new pedagogic responses from teachers in Australia and other Western countries of refugee re-settlement. If the students are to have optimal educational and life chances, it is crucial for them to acquire resources for conceptually deep and critical literacy tasks while still learning basic reading and writing skills. This requires teachers to extend their pedagogic repertoires: subject area teachers must teach language and literacy alongside content; high school teachers must teach what has been thought of as primary school curriculum. The aim of this article is to describe some teacher responses to these challenges. Data are drawn from a study involving an intensive language school and three high schools, and also from the author’s experience as a homework tutor for refugees. Stand-alone basic skills programs are described, as are modifications of long-established ESL programs. It is also argued that teachers need to find ways of linking with the conceptual knowledge of students who arrive with content area backgrounds different from others in their class. Everyday life experiences prior to, and after re-settlement in the West, are rich with potential in this regard.
Resumo:
This paper focuses on issues of access to productive literacy learning as part of socially just schooling for recently arrived refugee youth within Australia. It argues that a sole reliance on traditional ESL pedagogy is failing this vulnerable group of students, who differ significantly from past refugees who have settled in Australia. Many have been ‘placeless’ for some time, are likely to have received at best an interrupted education before arriving in Australia, and may have experienced signification trauma (Christie & Sidhu, 2006; Cottone, 2004; Miller, Mitchell, & Brown, 2005). Australian Government policy has resulted in spacialized settlement, leaving particular schools dealing with a large influx of refugee students who may be attending school for the first time (Centre for Multicultural Youth Issues, 2004; Sidhu & Christie, 2002). While this has implications generally, it has particular consequences for secondary school students attempting to learn English literacy in short periods of time, without basic foundations in either English or print-based literacy in any first language (Centre for Multicultural Youth Issues, 2006). Many of these students leave schools without the most basic early literacy practices, having endured several years of pedagogy pitched well beyond their needs. This paper suggests that schools must take up three key roles: to educate, to provide a site for the development of civic responsibility, and to act as a site for welfare with responsibility. As a system, our department needs to work out what can we do for 17-18 year olds that are coming into our school system in year 10 without more than 1-2 years of education. I don't think there is a policy about what to do. – (T2-ESL teacher)
Resumo:
In recent times, light gauge cold-formed steel sections have been used extensively as primary load bearing structural members in many applications in the building industry. Fire safety design of structures using such sections has therefore become more important. Deterioration of mechanical properties of yield stress and elasticity modulus is considered the most important factor affecting the performance of steel structures in fires. Hence there is a need to fully understand the mechanical properties of light gauge cold-formed steels at elevated temperatures. A research project based on experimental studies was therefore undertaken to investigate the deterioration of mechanical properties of light gauge cold-formed steels. Tensile coupon tests were undertaken to determine the mechanical properties of these steels made of both low and high strength steels and thicknesses of 0.60, 0.80 and 0.95 mm at temperatures ranging from 20 to 800ºC. Test results showed that the currently available reduction factors are unsafe to use in the fire safety design of cold-formed steel structures. Therefore new predictive equations were developed for the mechanical properties of yield strength and elasticity modulus at elevated temperatures. This paper presents the details of the experimental study, and the results including the developed equations. It also includes details of a stress-strain model for light gauge cold-formed steels at elevated temperatures.
Resumo:
This paper presents the details of experimental studies on the shear behaviour of a recently developed, cold-formed steel beam known as LiteSteel Beam (LSB). The LSB section has a unique shape of a channel beam with two rectangular hollow flanges and is produced by a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. To date, no research has been undertaken on the shear behaviour of LiteSteel beams with torsionally rigid, rectangular hollow flanges. In the present investigation, experimental studies involving more than 30 shear tests were carried out to investigate the shear behaviour of 13 different LSB sections. It was found that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LiteSteel beams. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Experimental results are presented and compared with corresponding predictions from the current design codes in this paper. Appropriate improvements have been proposed for the shear strength of LSBs based on AS/NZS 4600 design equations.
Resumo:
Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.