79 resultados para Electrical conduction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of different EMS current thresholds on muscle activates not only the muscle but also peripheral sensory axons that send proprioceptive and pain signals to the cerebral cortex. A 32-channel time-domain fNIRS instrument was employed to map regional cortical activities under varied EMS current intensities applied on the right wrist extensor muscle. Eight healthy volunteers underwent four EMS at different current thresholds based on their individual maximal tolerated intensity (MTI), i.e., 10 % < 50 % < 100 % < over 100 % MTI. Time courses of the absolute oxygenated and deoxygenated hemoglobin concentrations primarily over the bilateral sensorimotor cortical (SMC) regions were extrapolated, and cortical activation maps were determined by general linear model using the NIRS-SPM software. The stimulation-induced wrist extension paradigm significantly increased activation of the contralateral SMC region according to the EMS intensities, while the ipsilateral SMC region showed no significant changes. This could be due in part to a nociceptive response to the higher EMS current intensities and result also from increased sensorimotor integration in these cortical regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design process utilised for producing a two stage isolated Unity Power Factor (UPF) rectifier. The important yet less intuitive aspects of the design process are highlighted to aid in the simplification of designing a power converter which meets future UPF standards. Two converter designs are presented, a 200W converter utilising a critical conduction controller and a 750W converter based around a continuous conduction controller. Both designs presented were based on the requirements of an audio power amplifier, but the processes apply equally to a range of applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims of this project is to develop demand side response model which assists electricity consumers who are exposed to the market price through aggregator to manage the air-conditioning peak electricity demand. The main contribution of this research is to show how consumers can optimise the energy cost caused by the air-conditioning load considering the electricity market price and network overload. The model is tested with selected characteristics of the room, Queensland electricity market data from Australian Energy Market Operator and data from the Bureau of Statistics on temperatures in Brisbane, during weekdays on hot days from 2011 - 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper merges the analysis of a case history and the simplified theoretical model related to a rather singular phenomenon that may happen in rotating machinery. Starting from the first, a small industrial steam turbine experienced a very strange behavior during megawatt load. When the unit was approaching the maximum allowed power, the temperature of the babbitt metal of the pads of the thrust bearing showed constant increase with an unrecoverable drift. Bearing inspection showed that pad trailing edge had the typical aspect of electrical pitting. This kind of damage was not reparable and bearing pads had to replaced. This problem occurred several times in sequence and was solved only by adding further ground brushes to the shaft-line. Failure analysis indicated electrodischarge machining as the root fault. A specific model, able to take into consideration the effect of electrical pitting and loading capacity decreasing as a consequence of the damage of the babbitt metal, is proposed in the paper and shows that the phenomenon causes the irretrievable failure of the thrust bearing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites with carbon nanotubes are becoming increasingly used in energy storage and electronic devices, due to incorporated excellent properties from carbon nanotubes and polymers. Although their properties make them more attractive than conventional smart materials, their electrical properties are found to be temperature-dependent which is important to consider for the design of devices. To study the effects of temperature in electrically conductive multi-wall carbon nanotube/epoxy composites, thin films were prepared and the effect of temperature on the resistivity, thermal properties and Raman spectral characteristics of the composite films was evaluated. Resistivity-temperature profiles showed three distinct regions in as-cured samples and only two regions in samples whose thermal histories had been erased. In the vicinity of the glass transition temperature, the as-cured composites exhibited pronounced resistivity and enthalpic relaxation peaks, which both disappeared after erasing the composites’ thermal histories by temperature cycling. Combined DSC, Raman spectroscopy, and resistivity-temperature analyses indicated that this phenomenon can be attributed to the physical aging of the epoxy matrix and that, in the region of the observed thermal history-dependent resistivity peaks, structural rearrangement of the conductive carbon nanotube network occurs through a volume expansion/relaxation process. These results have led to an overall greater understanding of the temperature-dependent behaviour of conductive carbon nanotube/epoxy composites, including the positive temperature coefficient effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unstable density-driven flow can lead to enhanced solute transport in groundwater. Only recently has the complex fingering pattern associated with free convection been documented in field settings. Electrical resistivity (ER) tomography has been used to capture a snapshot of convective instabilities at a single point in time, but a thorough transient analysis is still lacking in the literature. We present the results of a 2 year experimental study at a shallow aquifer in the United Arab Emirates that was designed to specifically explore the transient nature of free convection. ER tomography data documented the presence of convective fingers following a significant rainfall event. We demonstrate that the complex fingering pattern had completely disappeared a year after the rainfall event. The observation is supported by an analysis of the aquifer halite budget and hydrodynamic modeling of the transient character of the fingering instabilities. Modeling results show that the transient dynamics of the gravitational instabilities (their initial development, infiltration into the underlying lower-density groundwater, and subsequent decay) are in agreement with the timing observed in the time-lapse ER measurements. All experimental observations and modeling results are consistent with the hypothesis that a dense brine that infiltrated into the aquifer from a surficial source was the cause of free convection at this site, and that the finite nature of the dense brine source and dispersive mixing led to the decay of instabilities with time. This study highlights the importance of the transience of free convection phenomena and suggests that these processes are more rapid than was previously understood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims Although suctioning is a standard airway maintenance procedure, there are significant associated risks, such as loss of lung volume due to high negative suction pressures. This study aims to assess the extent and duration of change in end-expiratory level (EEL) resulting from endotracheal tube (ETT) suction and to examine the relationship between EEL and regional lung ventilation in ventilated preterm infants with respiratory distress syndrome. Methods A prospective observational clinical study of the effect of ETT suction on 20 non-muscle-relaxed preterm infants with respiratory distress syndrome (RDS) on conventional mechanical ventilation was conducted in a neonatal intensive care unit. Ventilation distribution was measured with regional impedance amplitudes and EEL using electrical impedance tomography. Results ETT suction resulted in a significant increase in EEL post-suction (P < 0.01). Regionally, anterior EEL decreased and posterior EEL increased post-suction, suggesting heterogeneity. Tidal volume was significantly lower in volume-guarantee ventilation compared with pressure-controlled ventilation (P = 0.04). Conclusions ETT suction in non-muscle-relaxed and ventilated preterm infants with RDS results in significant lung volume increase that is maintained for at least 90 min. Regional differences in distribution of ventilation with ETT suction suggest that the behaviour of the lung is heterogeneous in nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymeric nanocomposites have been shown to possess superior electrical insulation properties compared to traditional filled-resins. However, poor dispersion uniformity and insufficient filler-matrix interaction can adversely affect insulation properties of nanocomposites. In this study, the use of plasma polymerization is proposed to coat poly(ethylene oxide) polymer layers on silica nanoparticles. It is shown that better dispersion is achieved and C-O bonds are created between the surface functional groups of the nanoparticles and the host epoxy polymer. Electrical insulation tests demonstrate that the nanocomposites with plasma polymerized silica nanoparticles feature better resistance against electrical treeing, lower dielectric constant, and also mitigated space charge built-up. Therefore, plasma polymerization offers a promising fabrication technique to further improve the synthesis of nanocomposite dielectrics with superior electrical insulation properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lanthanum oxide (La2O3) nanostructured films are synthesized on a p-type silicon wafer by ablation of La2O3 pellet due to interaction with hot dense argon plasmas in a modified dense plasma focus (DPF) device. The nanostructured films are investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) spectra. SEM study shows the formation of nano-films having nano-size structures with the average nanostructures size ~25, ~53, and ~45 nm for one, two, and three DPF shots, respectively. The nanostructures sizes and morphology of nano-films are consistent between the AFM and SEM analyses. XRD spectra confirms nano-sized La2O3 with an average grain size ~34, ~51, and ~42 nm for one, two, and three DPF shots, respectively. The electrical properties such as current-voltage and capacitance-voltage (C-V) characteristics of the Al-La2O3-Si metal-oxide- semiconductor (MOS) capacitor structure are measured. The current conduction mechanism of the MOS capacitors is also demonstrated. The C-V characteristics are further used to obtain the electrical parameters such as the dielectric constant, oxide thickness, flat-band capacitance, and flat-band voltage of the MOS capacitors. These measurements demonstrate significantly lower leakage currents without any commonly used annealing or doping, thereby revealing a significant improvement of the MOS nanoelectronic device performance due to the incorporation of the DPF-produced La2O3 nano-films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of plasmonoscillations, induced by pulsed laserirradiation, on the DC tunnel current between islands in a discontinuous thin goldfilm is studied. The tunnel current is found to be strongly enhanced by partial rectification of the plasmon-induced AC tunnel currents flowing between adjacent gold islands. The DC tunnel current enhancement is found to increase approximately linearly with the laser intensity and the applied DC bias voltage. The experimental data can be well described by an electron tunnelling model which takes the plasmon-induced AC voltage into account. Thermal heating seems not to contribute to the tunnel current enhancement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple, uniquely plasma-enabled and environment-friendly process to reduce the thickness of vertically standing graphenes to only 4–5 graphene layers and arranging them in dense, ultra-large surface area, ultra-open-edge-length, self-organized and interconnected networks is demonstrated. The approach for the ultimate thickness reduction to 1–2 graphene layers is also proposed. The vertical graphene networks are optically transparent and show tunable electric properties from semiconducting to semi-metallic and metallic at room and near-room temperature, thus recovering semi-metallic properties of a single-layer graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of effective control of morphology and electrical properties of self-organized graphene structures on plasma-exposed Si surfaces is demonstrated. The structures are vertically standing nanosheets and can be grown without any catalyst and any external heating upon direct contact with high-density inductively coupled plasmas at surface temperatures not exceeding 673–723 K. Study of nucleation and growth dynamics revealed the possibility to switch-over between the two most common (turnstile- and maze-like) morphologies on the same substrates by a simple change of the plasma parameters. This change leads to the continuous or discontinuous native oxide layer that supports self-organized patterns of small carbon nanoparticles on which the structures nucleate. It is shown that by tailoring the nanoparticle arrangement one can create various three-dimensional architectures and networks of graphene nanosheet structures. We also demonstrate effective control of the degree of graphitization of the graphene nanosheet structures from the initial through the final growth stages. This makes it possible to tune the electrical resistivity properties of the produced three-dimensional patterns/networks from strongly dielectric to semiconducting. Our results contribute to enabling direct integration of graphene structures into presently dominant Si-based nanofabrication platform for next-generation nanoelectronic, sensor, biomedical, and optoelectronic components and nanodevices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Al-doped zinc oxide (AZO) thin films are deposited onto glass substrates using radio-frequency reactive magnetron sputtering and the improvements in their physical properties by post-synthesis thermal treatment are reported. X-ray diffraction spectra show that the structure of films can be controlled by adjusting the annealing temperatures, with the best crystallinity obtained at 400°C under a nitrogen atmosphere. These films exhibit improved quality and better optical transmittance as indicated by the UV-Vis spectra. Furthermore, the sheet resistivity is found to decrease from 1.87 × 10-3 to 5.63 × 10-4Ω⋅cm and the carrier mobility increases from 6.47 to 13.43 cm2 ⋅ V-1 ⋅ s-1 at the optimal annealing temperature. Our results demonstrate a simple yet effective way in controlling the structural, optical and electrical properties of AZO thin films, which is important for solar cell applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results on the synthesis, mechanical and electrical properties of carbon microcoils and nanocoils (CMCs, CNCs) synthesized using catalytic CVD and Ni-P and Co-P catalyst alloys, respectively, are reported. SEM analysis reveals that the CMCs and CNCs have unique helical morphologies, and diameters of 5.0-9.0 μm and 450-550 nm, respectively. Moreover, CMCs with flat cross-section can be stretched to 3 times their original coil lengths. Current-voltage characteristics of a single microcoil have also been obtained. It is found that the CMCs have the electrical conductivity between 100 and 160 S/cm, whereas the electrical resistance increases by about 20% during the coil extension. Besides, the microcoils can produce light in vacuum when the test voltage reaches 10 V. The emission intensity increases as the voltage increases. The mechanical and electrical properties of CMCs and CNC make them potentially useful in many applications in micromagnetic sensors, mechanical microsprings and optoelectronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ionization energy theory is used to calculate the evolution of the resistivity and specific heat curves with respect to different doping elements in the recently discovered superconducting pnictide materials. Electron-conduction mechanism in the pnictides above the structural transition temperature is explained unambiguously, which is also consistent with other strongly correlated materials, such as cuprates, manganites, titanates and magnetic semiconductors.