98 resultados para Electric lighting
Resumo:
Electric vehicle battery packs require DC circuit breakers for safety. These must break thousands of Amps DC at hundreds of Volts. The Sunshark solar racing car has a 140V 17Ahr battery box which needs such a breaker. A static design using 200V MOSFETs to interrupt the fault current is presented. The design specification, decisions and proposed solution circuit are given. The current sensing technique,MOSFET overvoltage protection, and DC bus capacitor precharging scheme are specific focuses. Simulation results are presented and discussed.
Resumo:
This paper presents a review of existing and current developments and the analysis of Hybrid-Electric Propulsion Systems (HEPS) for small fixed-wing Unmanned Aerial Vehicles (UAVs). Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. One technology with potential in this area is with the use of HEPS. In this paper, information on the state-of-art technology in this field of research is provided. A description and simulation of a parallel HEPS for a small fixed-wing UAV by incorporating an Ideal Operating Line (IOL) control strategy is described. Simulation models of the components in a HEPS were designed in the MATLAB Simulink environment. An IOL analysis of an UAV piston engine was used to determine the most efficient points of operation for this engine. The results show that an UAV equipped with this HEPS configuration is capable of achieving a fuel saving of 6.5%, compared to the engine-only configuration.
Resumo:
Plug-in electric vehicles will soon be connected to residential distribution networks in high quantities and will add to already overburdened residential feeders. However, as battery technology improves, plug-in electric vehicles will also be able to support networks as small distributed generation units by transferring the energy stored in their battery into the grid. Even though the increase in the plug-in electric vehicle connection is gradual, their connection points and charging/discharging levels are random. Therefore, such single-phase bidirectional power flows can have an adverse effect on the voltage unbalance of a three-phase distribution network. In this article, a voltage unbalance sensitivity analysis based on charging/discharging levels and the connection point of plug-in electric vehicles in a residential low-voltage distribution network is presented. Due to the many uncertainties in plug-in electric vehicle ratings and connection points and the network load, a Monte Carlo-based stochastic analysis is developed to predict voltage unbalance in the network in the presence of plug-in electric vehicles. A failure index is introduced to demonstrate the probability of non-standard voltage unbalance in the network due to plug-in electric vehicles.
Resumo:
Robust descriptor matching across varying lighting conditions is important for vision-based robotics. We present a novel strategy for quantifying the lighting variance of descriptors. The strategy works by utilising recovered low dimensional mappings from Isomap and our measure of the lighting variance of each of these mappings. The resultant metric allows different descriptors to be compared given a dataset and a set of keypoints. We demonstrate that the SIFT descriptor typically has lower lighting variance than other descriptors, although the result depends on semantic class and lighting conditions.
Resumo:
This study presents the largest-known, investigation on discomfort glare with 493 surveys collected from five green buildings in Brisbane, Australia. The study was conducted on full-time employees, working under their everyday lighting conditions, all of whom had no affiliation with the research institution. The survey consisted of a specially tailored questionnaire to assess potential factors relating to discomfort glare. Luminance maps extracted from high dynamic range (HDR) images were used to capture the luminous environment of the occupants. Occupants who experienced glare on their monitor and/or electric glare were excluded from analysis leaving 419 available surveys. Occupants were more sensitive to glare than any of the tested indices accounted for. A new index, the UGP was developed to take into account the scope of results in the investigation. The index is based on a linear transformation of the UGR to calculate a probability of disturbed persons. However all glare indices had some correlation to discomfort, and statistically there was no difference between the DGI, UGR and CGI. The UGP broadly reflects the demographics of the working population in Australia and the new index is applicable to open plan green buildings.
Resumo:
Solutions to remedy the voltage disturbances have been mostly suggested only for industrial customers. However, not much research has been done on the impact of the voltage problems on residential facilities. This paper proposes a new method to reduce the effect of voltage dip and swell in smart grids equipped by communication systems. To reach this purpose, a voltage source inverter and the corresponding control system are employed. The behavior of a power system during voltage dip and swell are analyzed. The results demonstrate reasonable improvement in terms of voltage dip and swell mitigation. All simulations are implemented in MATLAB/Simulink environment.
Resumo:
This paper presents an analytical method to analyze the effect of X to R ratio as well as impedance value of branches on observability of a network based on un-decoupled formulation of state estimation (SE) and null space of matrices. The results showed that the X to R ratio of branches had no effect on the observability of networks. In addition, it was shown that observability of some networks was affected by impedance values while some others were not affected. In addition, for branch observability analysis of radial network, a simple and quick method is developed. Illustrative examples of the network under transmission and distribution voltages demonstrate the effectiveness of the proposed methods.
Resumo:
The experiences of the loss reduction projects in electric power distribution companies (EPDCs) of Iran are presented. The loss reduction methods, which are proposed individually by 14 EPDCs, corresponding energy saving (ES), Investment costs (IC), and loss rate reductions are provided. In order to illustrate the effectiveness and performance of the loss reduction methods, three parameters are proposed as energy saving per investment costs (ESIC), energy saving per quantity (ESPQ), and investment costs per quantity (ICPQ). The overall ESIC of 14 EPDC as well as individual average and standard deviation of the EISC for each method is presented and compared. In addition, the average and standard deviation of the ESPQs and ICPQs for the loss reduction methods, individually, are provided and investigated. These parameters are useful for EPDCs that intend to reduce the electric losses in distribution networks as a benchmark and as a background in the planning purposes.
Resumo:
In this paper, a loss reduction planning in electric distribution networks is presented based on the successful experiences in distribution utilities of IRAN and some developed countries. The necessary technical and economical parameters of planning are calculated from related projects in IRAN. Cost, time, and benefits of every sub-program including seven loss reduction approaches are determined. Finally, the loss reduction program, the benefit per cost, and the return of investment in optimistic and pessimistic conditions are introduced.
Resumo:
Guitar technology underwent significant changes in the 20th century in the move from acoustic to electric instruments. In the first part of the 21st century, the guitar continues to develop through its interaction with digital technologies. Such changes in guitar technology are usually grounded in what we might call the "cultural identity" of the instrument: that is, the various ways that the guitar is used to enact, influence and challenge sociocultural and musical discourses. Often, these different uses of the guitar can be seen to reflect a conflict between the changing concepts of "noise" and "musical sound."
Resumo:
High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck‑boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network causing the bone strength and toughness augmentation, it apparently did not affect the mineral phase of the cortical bone material. The results also confirmed that the indirect application of high power pulsed electric field at 500 V and 10 kHz through capacitive coupling method was safe and did not destroy the bone tissue construction.
Resumo:
We report on the chemical synthesis of the arrays of silicon oxide nanodots and their self-organization on the surface via physical processes triggered by surface charges. The method based on chemically active oxygen plasma leads to the rearrangement of nanostructures and eventually to the formation of groups of nanodots. This behavior is explained in terms of the effect of electric field on the kinetics of surface processes. The direct measurements of the electric charges on the surface demonstrate that the charge correlates with the density and arrangement of nanodots within the array. Extensive numerical simulations support the proposed mechanism and prove a critical role of the electric charges in the self-organization. This simple and environment-friendly self-guided process could be used in the chemical synthesis of large arrays of nanodots on semiconducting surfaces for a variety of applications in catalysis, energy conversion and storage, photochemistry, environmental and biosensing, and several others.
Resumo:
The possibility to control the morphology and nucleation density of quasi-one-dimensional, single-crystalline α -Fe2 O3 nanostructures by varying the electric potential of iron surfaces exposed to reactive oxygen plasmas is demonstrated experimentally. A systematic increase in the oxygen ion flux through rf biasing of otherwise floating substrates and then an additional increase of the ion/neutral density resulted in remarkable structural transformations of straight nanoneedles into nanowires with controlled tapering/aspect ratio and also in larger nucleation densities. Multiscale numerical simulations relate the microscopic ion flux topographies to the nanostructure nucleation and morphological evolution. This approach is applicable to other metal-oxide nanostructures.
Resumo:
The paper presents results of comparative investigation of carbon nanotubes growth processes in dense low-temperature plasma and on substrate surface. Hybrid/Monte-Carlo numerical simulations were used to demonstrate the differences in the ion fluxes, growth rates and kinetics of adsorbed atoms re-distribution on substrate and nanotubes surfaces. We show that the plasma parameters significantly affect the nanotubes growth kinetics. We demonstrate that the growth rates of the nanotubes in plasma and on surface can differ by three orders, and the specific fluxes to the nanotube in the plasma can exceed the flux to surface-grown nanotube by six orders. We also show that the metal catalyst used for the nanotubes production on surface and in arc is a subject to very different conditions and this may be a key factor for the nanotube growth mode. The obtained dependencies for the ion fluxes to the nanotubes and nanotubes growth rates on the plasma parameters may be useful for selection of the production methods.