62 resultados para Dorsoventral patterning


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Yield in cultivated cotton (Gossypium spp.) is affected by the number and distribution of fibres initiated on the seed surface but, apart from simple statistical summaries, little has been done to assess this phenotype quantitatively. Here we use two types of spatial statistics to describe and quantify differences in patterning of cotton ovule fibre initials (FI). The following five different species of Gossypium were analysed: G. hirsutum L., G. barbadense L., G. arboreum, G. raimondii Ulbrich. and G. trilobum (DC.) Skovsted. Scanning electron micrographs of FIs were taken on the day of anthesis. Cell centres for fibre and epidermal cells were digitised and analysed by spatial statistics methods appropriate for marked point processes and tessellations. Results were consistent with previously published reports of fibre number and spacing. However, it was shown that the spatial distributions of FIs in all of species examined exhibit regularity, and are not completely random as previously implied. The regular arrangement indicates FIs do not appear independently of each other and we surmise there may be some form of mutual inhibition specifying fibre-initial development. It is concluded that genetic control of FIs differs from that of stomata, another well studied plant idioblast. Since spatial statistics show clear species differences in the distribution of FIs within this genus, they provide a useful method for phenotyping cotton. © CSIRO 2007.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The combination of thermally- and photochemically-induced polymerization using light sensitive alkoxyamines was investigated. The thermally driven polymerizations were performed via the cleavage of the alkoxyamine functionality, whereas the photochemically-induced polymerizations were carried out either by nitroxide mediated photo-polymerization (NMP2) or by a classical type II mechanism, depending on the structure of the light-sensitive alkoxyamine employed. Once the potential of the various structures as initiators of thermally- and photo-induced polymerizations was established, their use in combination for block copolymer syntheses was investigated. With each alkoxyamine investigated, block copolymers were successfully obtained and the system was applied to the post-modification of polymer coatings for application in patterning and photografting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Great Sandy Region (incorporating Fraser Island and the Cooloola sand-mass), south-east Queensland, contains a significant area of Ramsar-listed coastal wetlands, including the globally important patterned fen complexes. These mires form an elaborate network of pools surrounded by vegetated peat ridges and are the only known subtropical, Southern Hemisphere examples, with wetlands of this type typically located in high northern latitudes. Sedimentological, palynological and charcoal analysis from the Wathumba and Moon Point complexes on Fraser Island indicate two periods of swamp formation (that may contain patterned fens), one commencing at 12 000 years ago (Moon Point) and the other ~4300 years ago (Wathumba). Wetland formation and development is thought to be related to a combination of biological and hydrological processes with the dominant peat-forming rush, Empodisma minus, being an important component of both patterned and non-patterned mires within the region. In contrast to Northern Hemisphere paludifying systems, the patterning appears to initiate at the start of wetland development or as part of an infilling process. The wetlands dominated by E. minus are highly resilient to disturbance, particularly burning and sea level alterations, and appear to form important refuge areas for amphibians, fish and birds (both non-migratory and migratory) over thousands of years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction. The venous drainage system within vertebral bodies (VBs) has been well documented previously in cadaveric specimens. Advances in 3D imaging and image processing now allow for in vivo quantification of larger venous vessels, such as the basivertebral vein. Differences between healthy and scoliotic VB veins can therefore be investigated. Methods. 20 healthy adolescent controls and 21 AIS patients were recruited (with ethics approval) to undergo 3D MRI, using a 3 Tesla, T1-weighted 3D gradient echo sequence, resulting in 512 slices across the thoraco-lumbar spine, with a voxel size of 0.5x0.5x0.5mm. Using Amira Filament Editor, five transverse slices through the VB were examined simultaneously and the resulting observable vascular network traced. Each VB was assessed, and a vascular network recorded when observable. A local coordinate system was created in the centre of each VB and the vascular networks aligned to this. The length of the vascular network on the left and right sides (with a small central region) of the VB was calculated, and the spatial patterning of the networks assessed level-by-level within each subject. Results. An average of 6 (range 4-10) vascular networks, consistent with descriptions of the basivertebral vein, were identifiable within each subject, most commonly between T10-L1. Differences were seen in the left/right distribution of vessels in the control and AIS subjects. Healthy controls saw a percentage distribution of 29:18:53 across the left:centre:right regions respectively, whereas the AIS subjects had a slightly shifted distribution of 33:25:42. The control group showed consistent spatial patterning of the vascular networks across most levels, but this was not seen in the AIS group. Conclusion. Observation and quantification of the basivertebral vein in vivo is possible using 3D MRI. The AIS group lacked the spatial pattern repetition seen in the control group and minor differences were seen in the left/right distribution of vessels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural nanopatterned surfaces (nNPS) present on insect wings have demonstrated bactericidal activity [1, 2]. Fabricated nanopatterned surfaces (fNPS) derived by characterization of these wings have also shown superior bactericidal activity [2]. However bactericidal NPS topologies vary in both geometry and chemical characteristics of the individual features in different insects and fabricated surfaces, rendering it difficult to ascertain the optimum geometrical parameters underling bactericidal activity. This situation calls for the adaptation of new and emerging techniques, which are capable of fabricating and characterising comparable structures to nNPS from biocompatible materials. In this research, CAD drawn nNPS representing an area of 10 μm x10 μm was fabricated on a fused silica glass by Nanoscribe photonic professional GT 3D laser lithography system using two photon polymerization lithography. The glass was cleaned with acetone and isopropyl alcohol thrice and a drop of IP-DIP photoresist from Nanoscribe GmbH was cast onto the glass slide prior to patterning. Photosensitive IP-DIP resist was polymerized with high precision to make the surface nanopatterns using a 780 nm wavelength laser. Both moving-beam fixedsample (MBFS) and fixed-beam moving-sample (FBMS) fabrication approaches were tested during the fabrication process to determine the best approach for the precise fabrication of the required nanotopological pattern. Laser power was also optimized to fabricate the required fNPS, where this was changed from 3mW to 10mW to determine the optimum laser power for the polymerization of the photoresist for fabricating FNPS...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In humans, congenital spinal defects occur with an incidence of 0.5-1 per 1000 live births. One of the most severe syndromes with such defects is spondylocostal dysostosis (SCD). Over the past decade, the genetic basis of several forms of autosomal recessive SCD cases has been solved with the identification of four causative genes (DLL3, MESP2, LFNG and HES7). Autosomal dominant forms of SCD have also been reported, but to date no genetic etiology has been described for these. Here, we have used exome capture and next-generation sequencing to identify a stoploss mutation in TBX6 that segregates with disease in two generations of one family. We show that this mutation has a deleterious effect on the transcriptional activation activity of the TBX6 protein, likely due to haploinsufficiency. In mouse, Tbx6 is essential for the patterning of the vertebral precursor tissues, somites; thus, mutation of TBX6 is likely to be causative of SCD in this family. This is the first identification of the genetic cause of an autosomal dominant form of SCD, and also demonstrates the potential of exome sequencing to identify genetic causes of dominant diseases even in small families with few affected individuals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors combine nanostenciling and pulsed laser deposition to patterngermanium(Ge)nanostructures into desired architectures. They have analyzed the evolution of the Ge morphology with coverage. Following the formation of a wetting layer within each area defined by the stencil’s apertures, Gegrowth becomes three dimensional and the size and number of Ge nanocrystals evolve with coverage. Micro-Raman spectroscopy shows that the deposits are crystalline and epitaxial. This approach is promising for the parallel patterning of semiconductor nanostructures for optoelectronic applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The scanning tunneling microscope (STM) has evolved continually since its invention, as scientists have expanded its use to encompass atomic-scale manipulation, momentum-resolved electronic characterization, localized chemical reactions (bond breaking and bond making) in adsorbed molecules, and even chain reactions at surfaces. This burgeoning field has recently expanded to include the use of the STM to inject hot electrons into substrate surface states; the injected electrons can travel laterally and induce changes in chemical structure in molecules located up to 100 nm from the STM tip. We describe several key demonstrations of this phenomenon, including one appearing in this issue of ACS Nano by Chen et al. Possible applications for this technique are also discussed, including characterizing the dispersion of molecule−substrate interface states and the controlled patterning of molecular overlayers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The combination of nanostenciling with pulsed laser deposition (PLD) provides a flexible, fast approach for patterning the growth of Ge on Si. Within each stencilled site, the morphological evolution of the Ge structures with deposition follows a modified Stranski–Krastanov (SK) growth mode. By systematically varying the PLD parameters (laser repetition rate and number of pulses) on two different substrate orientations (111 and 100), we have observed corresponding changes in growth morphology, strain and elemental composition using scanning electron microscopy, atomic force microscopy and μ-Raman spectroscopy. The growth behaviour is well predicted within a classical SK scheme, although the Si(100) growth exhibits significant relaxation and ripening with increasing coverage. Other novel aspects of the growth include the increased thickness of the wetting layer and the kinetic control of Si/Ge intermixing via the PLD repetition rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tip of a scanning tunneling microscope (STM) can be used to dehydrogenate freely-diffusing tetrathienoanthracene (TTA) molecules on Cu(111), trapping the molecules into metal-coordinated oligomeric structures. The process proceeds at bias voltages above ∼3 V and produces organometallic structures identical to those resulting from the thermally-activated cross-coupling of a halogenated analogue. The process appears to be substrate dependent: no oligomerization was observed on Ag(111) or HOPG. This approach demonstrates the possibility of controlled synthesis and nanoscale patterning of 2D oligomer structures on selected surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent years have witnessed a large volume of works on the modification of graphene; however, an understanding of the associated morphology or mechanical properties changes is still lacking, which is vital for its engineering implementation. By taking the C4F fluorination as an example, we find that the morphology of both graphene sheet (GS) and graphene nanoribbon (GNR) can be effectively tailored by fluorination patterning via molecular dynamics simulations. The fluorine atom produces out-of-plane forces which trigger several intriguing morphology changes to monolayer graphene, including zigzag, folded, ruffle, nanoscroll, and chain structures. Notably, for multilayer GNR, the delamination and climbing phenomena of the surface layer are observed. Further studies show that the fluorination pattern can also be utilized to modulate the mechanical properties of graphene, e.g., about 40% increase of the effective yield strain is observed for the examined GNR with fluorination patterns. This study not only demonstrates the significant impacts on the morphology of graphene from fluorination but also suggests an effective avenue to tailor the morphology and thus mechanical properties of GS and GNR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regional studies globally have a strong focus on understanding the causes of variation in the economic performance and wellbeing of regions and this emphasis acknowledges that the strength of the local or regional economy plays a determinant role in shaping quality of life. Regional research has been less active in considering spatial variation in other factors that are critical to individual and societal wellbeing. For example, the regional studies community has been absent from the debate on the social determinants of health and how these influences vary spatially. This paper considers the results of a cross sectional survey of Australians aged 65 and over that focussed on social connections and wellbeing. It examines regional variations in the incidence of social isolation within the older population. It finds that while the incidence of self-reported social isolation amongst older persons is broadly consistent with earlier studies, it demonstrates a spatial patterning that is unexpected. The paper considers community-building activities in addressing the impacts of social isolation, including the role of urban design, and suggests that there is a need to supplement the national overview presented there through more detailed studies focussed on individual localities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Segmentation defects of the vertebrae (SDV) are caused by aberrant somite formation during embryogenesis and result in irregular formation of the vertebrae and ribs. The Notch signal transduction pathway plays a critical role in somite formation and patterning in model vertebrates. In humans, mutations in several genes involved in the Notch pathway are associated with SDV, with both autosomal recessive (MESP2, DLL3, LFNG, HES7) and autosomal dominant (TBX6) inheritance. However, many individuals with SDV do not carry mutations in these genes. Using whole-exome capture and massive parallel sequencing, we identified compound heterozygous mutations in RIPPLY2 in two brothers with multiple regional SDV, with appropriate familial segregation. One novel mutation (c.A238T:p.Arg80*) introduces a premature stop codon. In transiently transfected C2C12 mouse myoblasts, the RIPPLY2 mutant protein demonstrated impaired transcriptional repression activity compared with wild-type RIPPLY2 despite similar levels of expression. The other mutation (c.240-4T>G), with minor allele frequency <0.002, lies in the highly conserved splice site consensus sequence 5' to the terminal exon. Ripply2 has a well-established role in somitogenesis and vertebral column formation, interacting at both gene and protein levels with SDV-associated Mesp2 and Tbx6. We conclude that compound heterozygous mutations in RIPPLY2 are associated with SDV, a new gene for this condition. © The Author 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ghrelin, a gut hormone originating from the post-translational cleavage of preproghrelin, is the endogenous ligand of growth hormone secretagogue receptor 1a (GHS-R1a). Within the growth hormone (GH) axis, the biological activity of ghrelin requires octanoylation by ghrelin-O-acyltransferase (GOAT), conferring selective binding to the GHS-R1a receptor via acylated ghrelin. Complete loss of preproghrelin-derived signalling (through deletion of the Ghrl gene) contributes to a decline in peak GH release; however, the selective contribution of endogenous acyl-ghrelin to pulsatile GH release remains to be established. We assessed the pulsatile release of GH in ad lib. fed male germline goat−/− mice, extending measures to include mRNA for key hypothalamic regulators of GH release, and peripheral factors that are modulated relative to GH release. The amount of GH released was reduced in young goat−/− mice compared to age-matched wild-type mice, whereas pulse frequency and irregularity increased. Altered GH release did not coincide with alterations in hypothalamic Ghrh, Srif, Npy or Ghsr mRNA expression, or pituitary GH content, suggesting that loss of Goat does not compromise canonical mechanisms that contribute to pituitary GH production and release. Although loss of Goat resulted in an irregular pattern of GH release (characterised by an increase in the number of GH pulses observed during extended secretory events), this did not contribute to a change in the expression of sexually dimorphic GH-dependent liver genes. Of interest, circulating levels of insulin-like growth factor (IGF)-1 were elevated in goat−/− mice. This rise in circulating levels of IGF-1 was correlated with an increase in GH pulse frequency, suggesting that sustained or increased IGF-1 release in goat−/− mice may occur in response to altered GH release patterning. Our observations demonstrate that germline loss of Goat alters GH release and patterning. Although the biological relevance of altered GH secretory patterning remains unclear, we propose that this may contribute to sustained IGF-1 release and growth in goat−/− mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Description of the work Shrinking Violets is comprised of two half scale garments in laser cut silk organza, developed with a knotting device to allow for disassembly and reassembly. The first is a jacket in layered red organza including black storm flap details. The second is a vest in jade organza with circles of pink organza attached through a pattern of knots. Research Background This practice-led fashion design research sits within the field of Design for Sustainability (DfS) in fashion that seeks to mitigate the environmental and ethical impacts of fashion consumption and production. The research explores new systems of garment construction for DfS, and examines how these systems may involve ‘designing’ new user interactions with the garments. The garments’ construction system allows them to be disassembled and recycled or reassembled by users to form a new garment. Conventional garment design follows a set process of cutting and construction, with pattern pieces permanently machine-stitched together. Garments typically contain multiple fibre types; for example a jacket may be constructed from a shell of wool/polyester, an acetate lining, fusible interlinings, and plastic buttons. These complex inputs mean that textile recycling is highly labour intensive, first to separate the garment pieces and second to sort the multiple fibre types. This difficulty results in poor quality ‘shoddy’ comprised of many fibre types and unsuitable for new apparel, or in large quantities of recyclable textile waste sent to landfill (Hawley 2011). Design-led approaches that consider the garment’s end of life in the design process are a way of addressing this problem. In Gulich’s (2006) analysis, use of single materials is the most effective way to ensure ease of recycling, with multiple materials that can be detached next in effectiveness. Given the low rate of technological innovation in most apparel manufacturing (Ruiz 2011), a challenge for effective recycling is how to develop new manufacturing methods that allow for garments to be more easily disassembled at end-of-life. Research Contribution This project addresses the research question: How can design for disassembly be considered within the fashion design process? I have employed a practice-led methodology in which my design process leads the research, making use of methods of fashion design practice including garment and construction research, fabric and colour research, textile experimentation, drape, patternmaking, and illustration as well as more recent methods such as laser cutting. Interrogating the traditional approaches to garment construction is necessarily a technical process; however fashion design is as much about the aesthetic and desirability of a garment as it is about the garment’s pragmatics or utility. This requires a balance between the technical demands of designing for disassembly with the aesthetic demands of fashion. This led to the selection of luxurious, semi-transparent fabrics in bold floral colours that could be layered to create multiple visual effects, as well as the experimentation with laser cutting for new forms of finishing and fastening the fabrics together. Shrinking Violets makes two contributions to new knowledge in the area of design for sustainability within fashion. The first is in the technical development of apparel modularity through the system of laser cut holes and knots that also become a patterning device. The second contribution lies in the design of a system for users to engage with the garment through its ability to be easily reconstructed into a new form. Research Significance Shrinking Violets was exhibited at the State Library of Queensland’s Asia Pacific Design Library, 1-5 November 2015, as part of The International Association of Societies of Design Research’s (IASDR) biannual design conference. The work was chosen for display by a panel of experts, based on the criteria of design innovation and contribution to new knowledge in design. References Gulich, B. (2006). Designing textile products that are easy to recycle. In Y. Wang (Ed.), Recycling in Textiles (pp. 25-37). London: Woodhead. Hawley, J. M. (2011). Textile recycling options: exploring what could be. In A. Gwilt & T. Rissanen (Eds.), Shaping Sustainable Fashion: Changing the way we make and use clothes (pp. 143 - 155). London: Earthscan. Ruiz, B. (2014). Global Apparel Manufacturing. Retrieved 10 August 2014, from http://clients1.ibisworld.com/reports/gl/industry/default.aspx?entid=470