108 resultados para Distress signals.
Resumo:
Objective Theoretical models of post-traumatic growth (PTG) have been derived in the general trauma literature to describe the post-trauma experience that facilitates the perception of positive life changes. To develop a statistical model identifying factors that are associated with PTG, structural equation modelling (SEM) was used in the current study to assess the relationships between perception of diagnosis severity, rumination, social support, distress, and PTG. Method A statistical model of PTG was tested in a sample of participants diagnosed with a variety of cancers (N=313). Results An initial principal components analysis of the measure used to assess rumination revealed three components: intrusive rumination, deliberate rumination of benefits, and life purpose rumination. SEM results indicated that the model fit the data well and that 30% of the variance in PTG was explained by the variables. Trauma severity was directly related to distress, but not to PTG. Deliberately ruminating on benefits and social support were directly related to PTG. Life purpose rumination and intrusive rumination were associated with distress. Conclusions The model showed that in addition to having unique correlating factors, distress was not related to PTG, thereby providing support for the notion that these are discrete constructs in the post-diagnosis experience. The statistical model provides support that post-diagnosis experience is simultaneously shaped by positive and negative life changes and that one or the other outcome may be prevalent or may occur concurrently. As such, an implication for practice is the need for supportive care that is holistic in nature.
Resumo:
The purpose of this study was to explore the types and predictors of immigration distress among Vietnamese women in transnational marriages in Taiwan. A cross-sectional survey with face-toface interviews was conducted for data collection. A convenient sample of 203 Vietnamese women in transnational marriages in southern Taiwan was recruited. The Demographic Inventory measured the participants’ age, education, employment status, religion, length of residency and number of children, as well as their spouse’s age, education, employment status and religion. The Demand of Immigration Specific Distress scale measured the level of distress and had six subscales: loss, novelty, occupational adjustment, language accommodation, discrimination and alienation. Among the 203 participants, 6.4% had a high level of immigration distress; 91.1% had moderate distress; and 2.5% had minor distress. Higher mean scores were found for the loss, novelty and language accommodation subscales of the Demand of Immigration specific Distress scale. Participant’s (r = 0.321, p < 0.01) and spouse’s (r = 0.375, p < 0.01) unemployment, and more children (r = 0.129, p < 0.05) led to greater immigration distress. Length of residency in Taiwan (r = 0.576, p < 0.001) was an effective predictor of immigration distress. It indicated that the participants who had stayed fewer years in Taiwan had a higher level of immigrant distress. Health care professionals need to be aware that the female newcomers in transnational marriages are highly susceptible to immigration distress. The study suggests that healthcare professionals need to provide a comprehensive assessment of immigration distress to detect health problems early and administer culturally appropriate healthcare for immigrant women in transnational marriages.
Resumo:
For many decades correlation and power spectrum have been primary tools for digital signal processing applications in the biomedical area. The information contained in the power spectrum is essentially that of the autocorrelation sequence; which is sufficient for complete statistical descriptions of Gaussian signals of known means. However, there are practical situations where one needs to look beyond autocorrelation of a signal to extract information regarding deviation from Gaussianity and the presence of phase relations. Higher order spectra, also known as polyspectra, are spectral representations of higher order statistics, i.e. moments and cumulants of third order and beyond. HOS (higher order statistics or higher order spectra) can detect deviations from linearity, stationarity or Gaussianity in the signal. Most of the biomedical signals are non-linear, non-stationary and non-Gaussian in nature and therefore it can be more advantageous to analyze them with HOS compared to the use of second order correlations and power spectra. In this paper we have discussed the application of HOS for different bio-signals. HOS methods of analysis are explained using a typical heart rate variability (HRV) signal and applications to other signals are reviewed.
Resumo:
Objective: To explore the role of psychological distress in the self-reported risky driving of young novice drivers. Design: Cross-sectional online survey of 761 tertiary students aged 17-25 years with an intermediate (Provisional) driving licence who completed Kessler’s Psychological Distress Scale and the Behaviour of Young Novice Drivers Scale. Setting: Queensland, Australia, August-October 2009. Main outcome measures: Psychological distress, risky driving. Results: Regression analyses revealed that psychological distress uniquely explained 8.5% of the variance in young novice’s risky driving, with adolescents experiencing psychological distress also reporting higher levels of risky driving. Psychological distress uniquely explained a significant 6.7% and 9.5% of variance in risky driving for males and females respectively. Conclusions: Medical practitioners treating adolescents who have been injured through risky behaviour need to aware of the potential contribution of psychological distress, whilst mental health professionals working with adolescents experiencing psychological distress need to be aware of this additional source of potential harm. The nature of the causal relationships linking psychological distress and risky driving behaviour are not yet fully understood, indicating a need for further research so that strategies such as screening can be investigated.
Resumo:
Background Up to one-third of people affected by cancer experience ongoing psychological distress and would benefit from screening followed by an appropriate level of psychological intervention. This rarely occurs in routine clinical practice due to barriers such as lack of time and experience. This study investigated the feasibility of community-based telephone helpline operators screening callers affected by cancer for their level of distress using a brief screening tool (Distress Thermometer), and triaging to the appropriate level of care using a tiered model. Methods Consecutive cancer patients and carers who contacted the helpline from September-December 2006 (n = 341) were invited to participate. Routine screening and triage was conducted by helpline operators at this time. Additional socio-demographic and psychosocial adjustment data were collected by telephone interview by research staff following the initial call. Results The Distress Thermometer had good overall accuracy in detecting general psychosocial morbidity (Hospital Anxiety and Depression Scale cut-off score ≥ 15) for cancer patients (AUC = 0.73) and carers (AUC = 0.70). We found 73% of participants met the Distress Thermometer cut-off for distress caseness according to the Hospital Anxiety and Depression Scale (a score ≥ 4), and optimal sensitivity (83%, 77%) and specificity (51%, 48%) were obtained with cut-offs of ≥ 4 and ≥ 6 in the patient and carer groups respectively. Distress was significantly associated with the Hospital Anxiety and Depression Scale scores (total, as well as anxiety and depression subscales) and level of care in cancer patients, as well as with the Hospital Anxiety and Depression Scale anxiety subscale for carers. There was a trend for more highly distressed callers to be triaged to more intensive care, with patients with distress scores ≥ 4 more likely to receive extended or specialist care. Conclusions Our data suggest that it was feasible for community-based cancer helpline operators to screen callers for distress using a brief screening tool, the Distress Thermometer, and to triage callers to an appropriate level of care using a tiered model. The Distress Thermometer is a rapid and non-invasive alternative to longer psychometric instruments, and may provide part of the solution in ensuring distressed patients and carers affected by cancer are identified and supported appropriately.
Resumo:
This paper discusses the question of when pain and distress relief known to hasten death would cross the line between permissible conduct and killing. The issue is discussed in the context of organ donation after cardiac death, and considers the administration of analgesics, sedatives, and the controversial use of paralysing agents in the provision and withdrawal of ventilation.
Resumo:
In spite of significant research in the development of efficient algorithms for three carrier ambiguity resolution, full performance potential of the additional frequency signals cannot be demonstrated effectively without actual triple frequency data. In addition, all the proposed algorithms showed their difficulties in reliable resolution of the medium-lane and narrow-lane ambiguities in different long-range scenarios. In this contribution, we will investigate the effects of various distance-dependent biases, identifying the tropospheric delay to be the key limitation for long-range three carrier ambiguity resolution. In order to achieve reliable ambiguity resolution in regional networks with the inter-station distances of hundreds of kilometers, a new geometry-free and ionosphere-free model is proposed to fix the integer ambiguities of the medium-lane or narrow-lane observables over just several minutes without distance constraint. Finally, the semi-simulation method is introduced to generate the third frequency signals from dual-frequency GPS data and experimentally demonstrate the research findings of this paper.
Resumo:
This paper presents techniques which can lead to diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outline, including time-frequency analysis and selection of optimum frequency band.The results of applying mean field independent component analysis (MFICA) to separate the AE root mean square (RMS) signals and the effects of changing parameter values are also outlined. The results on separation of RMS signals show thsi technique has the potential of increasing the probability to successfully identify the AE events associated with the various mechanical events within the combustion process of multi-cylinder diesel engines.
Resumo:
Sequence data often have competing signals that are detected by network programs or Lento plots. Such data can be formed by generating sequences on more than one tree, and combining the results, a mixture model. We report that with such mixture models, the estimates of edge (branch) lengths from maximum likelihood (ML) methods that assume a single tree are biased. Based on the observed number of competing signals in real data, such a bias of ML is expected to occur frequently. Because network methods can recover competing signals more accurately, there is a need for ML methods allowing a network. A fundamental problem is that mixture models can have more parameters than can be recovered from the data, so that some mixtures are not, in principle, identifiable. We recommend that network programs be incorporated into best practice analysis, along with ML and Bayesian trees.