88 resultados para Dissociation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

alpha-Carboxylate radical anions are potential reactive intermediates in the free radical oxidation of biological molecules (e. g., fatty acids, peptides and proteins). We have synthesised well-defined alpha-carboxylate radical anions in the gas phase by UV laser photolysis of halogenated precursors in an ion-trap mass spectrometer. Reactions of isolated acetate ((center dot)CH(2)CO(2)) and 1-carboxylatobutyl (CH(3)CH(2)CH(2)(center dot)CHCO(2)(-)) radical anions with dioxygen yield carbonate (CO(3)(center dot-)) radical anions and this chemistry is shown to be a hallmark of oxidation in simple and alkyl-substituted cross-conjugated species. Previous solution phase studies have shown that C(alpha)-radicals in peptides, formed from free radical damage, combine with dioxygen to form peroxyl radicals that subsequently decompose into imine and keto acid products. Here, we demonstrate that a novel alternative pathway exists for two alpha-carboxylate C(alpha)-radical anions: the acetylglycinate radical anion (CH(3)C(O)NH(center dot)CHCO(2)(-)) and the model peptide radical anion, YGGFG(center dot-). Reaction of these radical anions with dioxygen results in concerted loss of carbon dioxide and hydroxyl radical. The reaction of the acetylglycinate radical anion with dioxygen reveals a two-stage process involving a slow, followed by a fast kinetic regime. Computational modelling suggests the reversible formation of the C(alpha) peroxyl radical facilitates proton transfer from the amide to the carboxylate group, a process reminiscent of, but distinctive from, classical proton-transfer catalysis. Interestingly, inclusion of this isomerization step in the RRKM/ME modelling of a G3SX level potential energy surface enables recapitulation of the experimentally observed two-stage kinetics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ion-molecule reactions between molecular oxygen and peptide radicals in the gas phase demonstrate that radical migration occurs easily within large biomolecules without addition of collisional activation energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2,3-Dimethyl-2,3-dinitrobutane (DMNB) is an explosive taggant added to plastic explosives during manufacture making them more susceptible to vapour-phase detection systems. In this study, the formation and detection of gas-phase \[M+H](+), \[M+Li](+), \[M+NH(4)](+) and \[M+Na](+) adducts of DMNB was achieved using electrospray ionisation on a triple quadrupole mass spectrometer. The \[M+H](+) ion abundance was found to have a strong dependence on ion source temperature, decreasing markedly at source temperatures above 50 degrees C. In contrast, the \[M+Na](+) ion demonstrated increasing ion abundance at source temperatures up to 105 degrees C. The relative susceptibility of DMNB adduct ions toward dissociation was investigated by collision-induced dissociation. Probable structures of product ions and mechanisms for unimolecular dissociation have been inferred based on fragmentation patterns from tandem mass (MS/MS) spectra of source-formed ions of normal and isotopically labelled DMNB, and quantum chemical calculations. Both thermal and collisional activation studies suggest that the \[M+Na](+) adduct ions are significantly more stable toward dissociation than their protonated analogues and, as a consequence, the former provide attractive targets for detection by contemporary rapid screening methods such as desorption electrospray ionisation mass spectrometry. Copyright (C) 2009 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High valent metal(IV)-oxo species, \[M(=O)(Melm)(n)(OAc)](+) (M = Mn-Ni, MeIm = 1-methylimidazole, n = 1-2), which are relevant to biology and oxidative catalysis, were produced and isolated in gas-phase reactions of the metal(II) precursor ions \[M(MeIm)(n)(OAc)](+) (M = Mn-Zn, n = 1-3) with ozone. The precursor ions \[M(MeIm)(OAc)](+) and \[M(MeIm)(2)(OAc)](+) were generated via collision-induced dissociation of the corresponding \[M(MeIm)(3)(OAc)](+) ion. The dependence of ozone reactivity on metal and coordination number is discussed. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The binding kinetics of NF-kappaB p50 to the Ig-kappaB site and to a DNA duplex with no specific binding site were determined under varying conditions of potassium chloride concentration using a surface plasmonresonance biosensor. Association and dissociation rate constants were measured enabling calculation of the dissociation constants. Under previously established high affinity buffer conditions, the k a for both sequences was in the order of 10(7) M-1s-1whilst the k d values varied 600-fold in a sequence-dependent manner between 10(-1) and 10(-4 )s-1, suggesting that the selectivity of p50 for different sequences is mediated primarily through sequence-dependent dissociation rates. The calculated K D value for the Ig-kappaB sequence was 16 pM, whilst the K D for the non-specific sequence was 9.9 nM. As the ionic strength increased to levels which are closer to that of the cellular environment, the binding of p50 to the non-specific sequence was abolished whilst the specific affinity dropped to nanomolar levels. From these results, a mechanism is proposed in which p50 binds specific sequences with high affinity whilst binding non-specific sequences weakly enough to allow efficient searching of the DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anion radicals CnOn-. (n = 3-6) can be generated by ionization of cyclic carbonyl compounds in the negative ion mode. The ions as well as the corresponding neutral counterparts are probed by means of different mass spectrometric techniques. The results suggest that oxocarbons, i.e. cyclic polyketones, are formed under conservation of the skeletons of the precursor molecules. At least for n = 3, however, the experimental findings indicate partial rearrangement of the expected cyclopropanetrione structure to an oxycarboxylate for the anion, i.e. O-.-C=C-CO2-. For n = 4 and 6 almost complete dissociation of the neutral polyones into carbon monoxide is found, whereas for n = 5 a distinct recovery signal indicates the generation of genuine cyclopentanepentaone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of two different DNA minor groove binding molecules, Hoechst 33258 and distamycin A, on the binding kinetics of NF-κB p50 to three different specific DNA sequences was studied at various salt concentrations. Distamycin A was shown to significantly increase the dissociation rate constant of p50 from the sequences PRDII (5′-GGGAAATTCC-3′) and Ig-κ B (5′-GGGACTTTCC-3′) but had a negligible effect on the dissociation from the palindromic target-κB binding site (5′-GGGAATTCCC-3′). By comparison, the effect of Hoechst 33258 on binding of p50 to each sequence was found to be minimal. The dissociation rates for the protein–DNA complexes increased at higher potassium chloride concentrations for the PRDII and Ig-κB binding motifs and this effect was magnified by distamycin A. In contrast, p50 bound to the palindromic target-κB site with a much higher intrinsic affinity and exhibited a significantly reduced salt dependence of binding over the ionic strength range studied, retaining a KD of less than 10 pM at 150 mM KCl. Our results demonstrate that the DNA binding kinetics of p50 and their salt dependence is strongly sequence-dependent and, in addition, that the binding of p50 to DNA can be influenced by the addition of minor groove-binding drugs in a sequence-dependent manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to use lipidomics to determine if the lipid composition of apolipoprotein-B-containing lipoproteins is modified by dyslipidaemia in type 2 diabetes and if any of the identified changes potentially have biological relevance in the pathophysiology of type 2 diabetes. VLDL and LDL from normolipidaemic and dyslipidaemic type 2 diabetic women and controls were isolated and quantified with HPLC and mass spectrometry. A detailed molecular characterisation of VLDL triacylglycerols (TAG) was also performed using the novel ozone-induced dissociation method, which allowed us to distinguish vaccenic acid (C18:1 n-7) from oleic acid (C18:1 n-9) in specific TAG species. Lipid class composition was very similar in VLDL and LDL from normolipidaemic type 2 diabetic and control participants. By contrast, dyslipidaemia was associated with significant changes in both lipid classes (e.g. increased diacylglycerols) and lipid species (e.g. increased C16:1 and C20:3 in phosphatidylcholine and cholesteryl ester and increased C16:0 [palmitic acid] and vaccenic acid in TAG). Levels of palmitic acid in VLDL and LDL TAG correlated with insulin resistance, and VLDL TAG enriched in palmitic acid promoted increased secretion of proinflammatory mediators from human smooth muscle cells. We showed that dyslipidaemia is associated with major changes in both lipid class and lipid species composition in VLDL and LDL from women with type 2 diabetes. In addition, we identified specific molecular lipid species that both correlate with clinical variables and are proinflammatory. Our study thus shows the potential of advanced lipidomic methods to further understand the pathophysiology of type 2 diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ethylenedione C2O2 is one of the elusive small molecules which have remained undetected even after numerous attempts with different experimental techniques, This is surprising, since theoretical studies predicted the triplet state of C2O2 to be stable towards spin-allowed dissociation and hence long-lived. Here we report a comprehensive study of charged and neutral ethylenedione by means of charge reversal and neutralization -reionization mass spectrometry. These experimental results, in conjunction with theoretical calculations, suggest that neutral ethylenedione is intrinsically short-lived rather than being elusive, Both the singlet and triplet states of C2O2 are predicted to dissociate rapidly into two ground-state CO molecules, and for the triplet species, this dissociation involves facile curve-crossing to the singlet surface within a few nanoseconds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the 1950s, X-ray crystallography has been the mainstay of structural biology, providing detailed atomic-level structures that continue to revolutionize our understanding of protein function. From recent advances in this discipline, a picture has emerged of intimate and specific interactions between lipids and proteins that has driven renewed interest in the structure of lipids themselves and raised intriguing questions as to the specificity and stoichiometry in lipid-protein complexes. Herein we demonstrate some of the limitations of crystallography in resolving critical structural features of ligated lipids and thus determining how these motifs impact protein binding. As a consequence, mass spectrometry must play an important and complementary role in unraveling the complexities of lipid-protein interactions. We evaluate recent advances and highlight ongoing challenges towards the twin goals of (1) complete structure elucidation of low, abundant, and structurally diverse lipids by mass spectrometry alone, and (2) assignment of stoichiometry and specificity of lipid interactions within protein complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methyl, methyl-d(3), and ethyl hydroperoxide anions (CH3OO-, CD3OO-, and CH3CH2OO-) have been prepared by deprotonation of their respective hydroperoxides in a stream of helium buffer, gas. Photodetachment with 364 nm (3.408 eV) radiation was used to measure the adiabatic electron affinities: EA[CH3OO, (X) over tilde (2)A"] = 1.161 +/- 0.005 eV, EA[CD3OO, (X) over tilde (2)A"] = 1.154 +/- 0.004 eV, and EA[CH3CH2OO, (X) over tilde (2)A"] = 1.186 +/- 0.004 eV. The photoelectron spectra yield values for the term energies: DeltaE((X) over tilde 2A"-(A) over tilde 2A')[CH3OO] = 0.914 +/- 0.005 eV, DeltaE((X) over tilde (2)A"-(A) over tilde 2A') [CD3OO] = 0.913 +/- 0.004 eV, and DeltaE((X) over tilde (2)A"-(A) over tilde (2)A')[CH3CH2OO] = 0.938 +/- 0.004 eV. A localized RO-O stretching mode was observed near 1100 cm(-1) for the ground state of all three radicals, and low-frequency R-O-O bending modes are also reported. Proton-transfer kinetics of the hydroperoxides have been measured in a tandem flowing afterglow-selected ion flow tube k(FA-SIFT) to determine the gas-phase acidity of the parent hydroperoxides: Delta (acid)G(298)(CH3OOH) = 367.6 +/- 0.7 kcal mol(-1), Delta (acid)G(298)(CD3OOH) = 367.9 +/- 0.9 kcal mol(-1), and Delta (acid)G(298)(CH3CH2OOH) = 363.9 +/- 2.0 kcal mol(-1). From these acidities we have derived the enthalpies of deprotonation: Delta H-acid(298)(CH3OOH) = 374.6 +/- 1.0 kcal mol(-1), Delta H-acid(298)(CD3OOH) = 374.9 +/- 1.1 kcal mol(-1), and Delta H-acid(298)(CH2CH3OOH) = 371.0 +/- 2.2 kcal mol(-1). Use of the negative-ion acidity/EA cycle provides the ROO-H bond enthalpies: DH298(CH3OO-H) 87.8 +/- 1.0 kcal mol(-1), DH298(CD3OO-H) = 87.9 +/- 1.1 kcal mol(-1), and DH298(CH3CH2OO-H) = 84.8 +/- 2.2 kcal mol(-1). We review the thermochemistry of the peroxyl radicals, CH3OO and CH3CH2OO. Using experimental bond enthalpies, DH298(ROO-H), and CBS/APNO ab initio electronic structure calculations for the energies of the corresponding hydroperoxides, we derive the heats of formation of the peroxyl radicals. The "electron affinity/acidity/CBS" cycle yields Delta H-f(298)[CH3OO] = 4.8 +/- 1.2 kcal mol(-1) and Delta H-f(298)[CH3CH2OO] = -6.8 +/- 2.3 kcal mol(-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Charge reversal (CR) and neutralization reionization (NR) experiments carried out on a 4-sector mass spectrometer demonstrate that isotopically labeled, linear C-4 anion rearranges upon collisional oxidation. The cations and neutrals formed in these experiments exhibit differing degrees of isotopic scrambling in their fragmentation patterns, indicative of (at least) partial isomerization of both states. Theoretical studies, employing the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31G(d) level of theory, favor conversion to the rhombic C-4 isomer on both cationic and neutral potential-energy surfaces with the rhombic structures predicted to be slightly more stable than the linear forms in each case. The combination of experiment with theory indicates that the elusive rhombic C-4 is formed as a cation and as a neutral following charge stripping of linear C-4(-)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The E-CO(2) elimination reactions of alkyl hydroperoxides proceed via abstraction of an (x-hydrogen by a base: X- + (RRHCOOH)-R-1-H-2 -> HX + (RRC)-R-1-C-2=O + HO-. Efficiencies and product distributions for the reactions of the hydroxide anion with methyl, ethyl, and tert-butyl hydroperoxides are studied in the gas phase. On the basis of experiments using three isotopic analogues, HO- + CH3OOH, HO- + CD3OOH, and H18O- + CH3OOH. the overall intrinsic reaction efficiency is determined to be 80% or greater. The E(CO)2 decomposition is facile for these methylperoxide reactions, and predominates over competing proton transfer at the hydroperoxide moiety. The CH3CH2OOH reaction displays a similar E(CO)2 reactivity, whereas proton transfer and the formation of HOO- are the exclusive pathways observed for (CH3)(3)COOH, which has no (x-hydrogen. All results are consistent with the E-CO(2) mechanism, transition state structure, and reaction energy diagrams calculated using the hybrid density functional B3LYP approach. Isotope labeling for HO- + CH3OOH also reveals some interaction between H2O and HO- within the E(CO)2 product complex [H2O center dot center dot center dot CH2=O center dot center dot center dot HO-]. There is little evidence, however. for the formation of the most exothermic products H2O + CH2(OH)O-, which would arise from nuclephilic condensation of CH2=O and HO-. The results suggest that the product dynamics are not totally statistical but are rather direct after the E-CO(2) transition state. The larger HO- + CH3CH2OOH system displays more statistical behavior during complex dissociation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The collision-induced dissociation ( CID) mass spectra of the \[M-H](-) anions of methyl, ethyl, and tert-butyl hydroperoxides have been measured over a range of collision energies in a flowing afterglow - selected ion flow tube (FA-SIFT) mass spectrometer. Activation of the CH3OO- anion is found to give predominantly HO- fragment anions whilst CH3CH2OO- and (CH3)(3)COO- produce HOO- as the major ionic fragment. These results, and other minor fragmentation pathways, can be rationalized in terms of unimolecular rearrangement of the activated anions with subsequent decomposition. The rearrangement reactions occur via initial abstraction of a proton from the alpha-carbon in the case of CH3OO- or the beta-carbon for CH3CH2OO- and (CH3)(3)COO-. Electronic structure calculations suggest that for the CH3CH2OO- anion, which can theoretically undergo both alpha- and beta-proton abstraction, the latter pathway, resulting in HOO- + CH2CH2, is energetically preferred.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unimolecular reactivities of a range of perbenzoate anions (X-C6H5CO3-), including the perbenzoate anion itself (X=H), nitroperbenzoates (X=para-, meta-, ortho-NO2), and methoxyperbenzoates (X=para-, meta-OCH3) were investigated in the gas phase by electrospray ionization tandem mass spectrometry. The collision-induced dissociation mass spectra of these compounds reveal product ions consistent with a major loss of carbon dioxide requiring unimolecular rearrangement of the perbenzoate anion prior to fragmentation. Isotopic labeling of the perbenzoate anion supports rearrangement via an initial nucleophilic aromatic substitution at the ortho carbon of the benzene ring, while data from substituted perbenzoates indicate that nucleophilic attack at the ipso carbon can be induced in the presence of electron-withdrawing moieties at the ortho and para positions. Electronic structure calculations carried out at the B3LYP/6311++G(d,p) level of theory reveal two competing reaction pathways for decarboxylation of perbenzoate anions via initial nucleophilic substitution at the ortho and ipso positions, respectively. Somewhat surprisingly, however, the computational data indicate that the reaction proceeds in both instances via epoxidation of the benzene ring with decarboxylation resulting-at least initially-in the formation of oxepin or benzene oxide anions rather than the energetically favored phenoxide anion. As such, this novel rearrangement of perbenzoate anions provides an intriguing new pathway for epoxidation of the usually inert benzene ring.