203 resultados para Diachronic cognitive semantics
Resumo:
Process models provide visual support for analyzing and improving complex organizational processes. In this paper, we discuss differences of process modeling languages using cognitive effectiveness considerations, to make statements about the ease of use and quality of user experience. Aspects of cognitive effectiveness are of importance for learning a modeling language, creating models, and understanding models. We identify the criteria representational clarity, perceptual discriminability, perceptual immediacy, visual expressiveness, and graphic parsimony to compare and assess the cognitive effectiveness of different modeling languages. We apply these criteria in an analysis of the routing elements of UML Activity Diagrams, YAWL, BPMN, and EPCs, to uncover their relative strengths and weaknesses from a quality of user experience perspective. We draw conclusions that are relevant to the usability of these languages in business process modeling projects.
Resumo:
Process models are used by information professionals to convey semantics about the business operations in a real world domain intended to be supported by an information system. The understandability of these models is vital to them actually being used. After all, what is not understood cannot be acted upon. Yet until now, understandability has primarily been defined as an intrinsic quality of the models themselves. Moreover, those studies that looked at understandability from a user perspective have mainly conceptualized users through rather arbitrary sets of variables. In this paper we advance an integrative framework to understand the role of the user in the process of understanding process models. Building on cognitive psychology, goal-setting theory and multimedia learning theory, we identify three stages of learning required to realize model understanding, these being Presage, Process, and Product. We define eight relevant user characteristics in the Presage stage of learning, three knowledge construction variables in the Process stage and three potential learning outcomes in the Product stage. To illustrate the benefits of the framework, we review existing process modeling work to identify where our framework can complement and extend existing studies.
Resumo:
Non-driving related cognitive load and variations of emotional state may impact a driver’s capability to control a vehicle and introduces driving errors. Availability of reliable cognitive load and emotion detection in drivers would benefit the design of active safety systems and other intelligent in-vehicle interfaces. In this study, speech produced by 68 subjects while driving in urban areas is analyzed. A particular focus is on speech production differences in two secondary cognitive tasks, interactions with a co-driver and calls to automated spoken dialog systems (SDS), and two emotional states during the SDS interactions - neutral/negative. A number of speech parameters are found to vary across the cognitive/emotion classes. Suitability of selected cepstral- and production-based features for automatic cognitive task/emotion classification is investigated. A fusion of GMM/SVM classifiers yields an accuracy of 94.3% in cognitive task and 81.3% in emotion classification.
Resumo:
As Web searching becomes more prolific for information access worldwide, we need to better understand users’ Web searching behaviour and develop better models of their interaction with Web search systems. Web search modelling is a significant and important area of Web research. Searching on the Web is an integral element of information behaviour and human–computer interaction. Web searching includes multitasking processes, the allocation of cognitive resources among several tasks, and shifts in cognitive, problem and knowledge states. In addition to multitasking, cognitive coordination and cognitive shifts are also important, but are under-explored aspects of Web searching. During the Web searching process, beyond physical actions, users experience various cognitive activities. Interactive Web searching involves many users’ cognitive shifts at different information behaviour levels. Cognitive coordination allows users to trade off the dependences among multiple information tasks and the resources available. Much research has been conducted into Web searching. However, few studies have modelled the nature of and relationship between multitasking, cognitive coordination and cognitive shifts in the Web search context. Modelling how Web users interact with Web search systems is vital for the development of more effective Web IR systems. This study aims to model the relationship between multitasking, cognitive coordination and cognitive shifts during Web searching. A preliminary theoretical model is presented based on previous studies. The research is designed to validate the preliminary model. Forty-two study participants were involved in the empirical study. A combination of data collection instruments, including pre- and post-questionnaires, think-aloud protocols, search logs, observations and interviews were employed to obtain users’ comprehensive data during Web search interactions. Based on the grounded theory approach, qualitative analysis methods including content analysis and verbal protocol analysis were used to analyse the data. The findings were inferred through an analysis of questionnaires, a transcription of think-aloud protocols, the Web search logs, and notes on observations and interviews. Five key findings emerged. (1) Multitasking during Web searching was demonstrated as a two-dimensional behaviour. The first dimension was represented as multiple information problems searching by task switching. Users’ Web searching behaviour was a process of multiple tasks switching, that is, from searching on one information problem to searching another. The second dimension of multitasking behaviour was represented as an information problem searching within multiple Web search sessions. Users usually conducted Web searching on a complex information problem by submitting multiple queries, using several Web search systems and opening multiple windows/tabs. (2) Cognitive shifts were the brain’s internal response to external stimuli. Cognitive shifts were found as an essential element of searching interactions and users’ Web searching behaviour. The study revealed two kinds of cognitive shifts. The first kind, the holistic shift, included users’ perception on the information problem and overall information evaluation before and after Web searching. The second kind, the state shift, reflected users’ changes in focus between the different cognitive states during the course of Web searching. Cognitive states included users’ focus on the states of topic, strategy, evaluation, view and overview. (3) Three levels of cognitive coordination behaviour were identified: the information task coordination level, the coordination mechanism level, and the strategy coordination level. The three levels of cognitive coordination behaviour interplayed to support multiple information tasks switching. (4) An important relationship existed between multitasking, cognitive coordination and cognitive shifts during Web searching. Cognitive coordination as a management mechanism bound together other cognitive processes, including multitasking and cognitive shifts, in order to move through users’ Web searching process. (5) Web search interaction was shown to be a multitasking process which included information problems ordering, task switching and task and mental coordinating; also, at a deeper level, cognitive shifts took place. Cognitive coordination was the hinge behaviour linking multitasking and cognitive shifts. Without cognitive coordination, neither multitasking Web searching behaviour nor the complicated mental process of cognitive shifting could occur. The preliminary model was revisited with these empirical findings. A revised theoretical model (MCC Model) was built to illustrate the relationship between multitasking, cognitive coordination and cognitive shifts during Web searching. Implications and limitations of the study are also discussed, along with future research work.
Mental computation : the identification of associated cognitive, metacognitive and affective factors
Resumo:
Background Most questionnaires used for physical activity (PA) surveillance have been developed for adults aged ≤65 years. Given the health benefits of PA for older adults and the aging of the population, it is important to include adults aged 65+ years in PA surveillance. However, few studies have examined how well older adults understand PA surveillance questionnaires. This study aimed to document older adults’ understanding of questions from the International PA Questionnaire (IPAQ), which is used worldwide for PA surveillance. Methods Participants were 41 community-dwelling adults aged 65-89 years. They each completed IPAQ in a face-to-face semi-structured interview, using the “think-aloud” method, in which they expressed their thoughts out loud as they answered IPAQ questions. Interviews were transcribed and coded according to a three-stage model: understanding the intent of the question; performing the primary task (conducting the mental operations required to formulate a response); and response formatting (mapping the response into pre-specified response options). Results Most difficulties occurred during the understanding and performing the primary task stages. Errors included recalling PA in an “average” week, not in the previous 7 days; including PA lasting ≤10 minutes/session; reporting the same PA twice or thrice; and including the total time of an activity for which only a part of that time was at the intensity specified in the question. Participants were unclear what activities fitted within a question’s scope and used a variety of strategies for determining the frequency and duration of their activities. Participants experienced more difficulties with the moderate-intensity PA and walking questions than with the vigorous-intensity PA questions. The sitting time question, particularly difficult for many participants, required the use of an answer strategy different from that used to answer questions about PA. Conclusions These findings indicate a need for caution in administering IPAQ to adults aged ≥65 years. Most errors resulted in over-reporting, although errors resulting in under-reporting were also noted. Given the nature of the errors made by participants, it is possible that similar errors occur when IPAQ is used in younger populations and that the errors identified could be minimized with small modifications to IPAQ.