97 resultados para Data Storage Solutions
Resumo:
A patient-centric DRM approach is proposed for protecting privacy of health records stored in a cloud storage based on the patient's preferences and without the need to trust the service provider. Contrary to the current server-side access control solutions, this approach protects the privacy of records from the service provider, and also controls the usage of data after it is released to an authorized user.
Resumo:
The health system is one sector dealing with a deluge of complex data. Many healthcare organisations struggle to utilise these volumes of health data effectively and efficiently. Also, there are many healthcare organisations, which still have stand-alone systems, not integrated for management of information and decision-making. This shows, there is a need for an effective system to capture, collate and distribute this health data. Therefore, implementing the data warehouse concept in healthcare is potentially one of the solutions to integrate health data. Data warehousing has been used to support business intelligence and decision-making in many other sectors such as the engineering, defence and retail sectors. The research problem that is going to be addressed is, "how can data warehousing assist the decision-making process in healthcare". To address this problem the researcher has narrowed an investigation focusing on a cardiac surgery unit. This research used the cardiac surgery unit at the Prince Charles Hospital (TPCH) as the case study. The cardiac surgery unit at TPCH uses a stand-alone database of patient clinical data, which supports clinical audit, service management and research functions. However, much of the time, the interaction between the cardiac surgery unit information system with other units is minimal. There is a limited and basic two-way interaction with other clinical and administrative databases at TPCH which support decision-making processes. The aims of this research are to investigate what decision-making issues are faced by the healthcare professionals with the current information systems and how decision-making might be improved within this healthcare setting by implementing an aligned data warehouse model or models. As a part of the research the researcher will propose and develop a suitable data warehouse prototype based on the cardiac surgery unit needs and integrating the Intensive Care Unit database, Clinical Costing unit database (Transition II) and Quality and Safety unit database [electronic discharge summary (e-DS)]. The goal is to improve the current decision-making processes. The main objectives of this research are to improve access to integrated clinical and financial data, providing potentially better information for decision-making for both improved from the questionnaire and by referring to the literature, the results indicate a centralised data warehouse model for the cardiac surgery unit at this stage. A centralised data warehouse model addresses current needs and can also be upgraded to an enterprise wide warehouse model or federated data warehouse model as discussed in the many consulted publications. The data warehouse prototype was able to be developed using SAS enterprise data integration studio 4.2 and the data was analysed using SAS enterprise edition 4.3. In the final stage, the data warehouse prototype was evaluated by collecting feedback from the end users. This was achieved by using output created from the data warehouse prototype as examples of the data desired and possible in a data warehouse environment. According to the feedback collected from the end users, implementation of a data warehouse was seen to be a useful tool to inform management options, provide a more complete representation of factors related to a decision scenario and potentially reduce information product development time. However, there are many constraints exist in this research. For example the technical issues such as data incompatibilities, integration of the cardiac surgery database and e-DS database servers and also, Queensland Health information restrictions (Queensland Health information related policies, patient data confidentiality and ethics requirements), limited availability of support from IT technical staff and time restrictions. These factors have influenced the process for the warehouse model development, necessitating an incremental approach. This highlights the presence of many practical barriers to data warehousing and integration at the clinical service level. Limitations included the use of a small convenience sample of survey respondents, and a single site case report study design. As mentioned previously, the proposed data warehouse is a prototype and was developed using only four database repositories. Despite this constraint, the research demonstrates that by implementing a data warehouse at the service level, decision-making is supported and data quality issues related to access and availability can be reduced, providing many benefits. Output reports produced from the data warehouse prototype demonstrated usefulness for the improvement of decision-making in the management of clinical services, and quality and safety monitoring for better clinical care. However, in the future, the centralised model selected can be upgraded to an enterprise wide architecture by integrating with additional hospital units’ databases.
Resumo:
Several authors stress the importance of data’s crucial foundation for operational, tactical and strategic decisions (e.g., Redman 1998, Tee et al. 2007). Data provides the basis for decision making as data collection and processing is typically associated with reducing uncertainty in order to make more effective decisions (Daft and Lengel 1986). While the first series of investments of Information Systems/Information Technology (IS/IT) into organizations improved data collection, restricted computational capacity and limited processing power created challenges (Simon 1960). Fifty years on, capacity and processing problems are increasingly less relevant; in fact, the opposite exists. Determining data relevance and usefulness is complicated by increased data capture and storage capacity, as well as continual improvements in information processing capability. As the IT landscape changes, businesses are inundated with ever-increasing volumes of data from both internal and external sources available on both an ad-hoc and real-time basis. More data, however, does not necessarily translate into more effective and efficient organizations, nor does it increase the likelihood of better or timelier decisions. This raises questions about what data managers require to assist their decision making processes.
Resumo:
Mixture models are a flexible tool for unsupervised clustering that have found popularity in a vast array of research areas. In studies of medicine, the use of mixtures holds the potential to greatly enhance our understanding of patient responses through the identification of clinically meaningful clusters that, given the complexity of many data sources, may otherwise by intangible. Furthermore, when developed in the Bayesian framework, mixture models provide a natural means for capturing and propagating uncertainty in different aspects of a clustering solution, arguably resulting in richer analyses of the population under study. This thesis aims to investigate the use of Bayesian mixture models in analysing varied and detailed sources of patient information collected in the study of complex disease. The first aim of this thesis is to showcase the flexibility of mixture models in modelling markedly different types of data. In particular, we examine three common variants on the mixture model, namely, finite mixtures, Dirichlet Process mixtures and hidden Markov models. Beyond the development and application of these models to different sources of data, this thesis also focuses on modelling different aspects relating to uncertainty in clustering. Examples of clustering uncertainty considered are uncertainty in a patient’s true cluster membership and accounting for uncertainty in the true number of clusters present. Finally, this thesis aims to address and propose solutions to the task of comparing clustering solutions, whether this be comparing patients or observations assigned to different subgroups or comparing clustering solutions over multiple datasets. To address these aims, we consider a case study in Parkinson’s disease (PD), a complex and commonly diagnosed neurodegenerative disorder. In particular, two commonly collected sources of patient information are considered. The first source of data are on symptoms associated with PD, recorded using the Unified Parkinson’s Disease Rating Scale (UPDRS) and constitutes the first half of this thesis. The second half of this thesis is dedicated to the analysis of microelectrode recordings collected during Deep Brain Stimulation (DBS), a popular palliative treatment for advanced PD. Analysis of this second source of data centers on the problems of unsupervised detection and sorting of action potentials or "spikes" in recordings of multiple cell activity, providing valuable information on real time neural activity in the brain.
Resumo:
This thesis presents a mathematical model of the evaporation of colloidal sol droplets suspended within an atmosphere consisting of water vapour and air. The main purpose of this work is to investigate the causes of the morphologies arising within the powder collected from a spray dryer into which the precursor sol for Synroc™ is sprayed. The morphology is of significant importance for the application to storage of High Level Liquid Nuclear Waste. We begin by developing a model describing the evaporation of pure liquid droplets in order to establish a framework. This model is developed through the use of continuum mechanics and thermodynamic theory, and we focus on the specific case of pure water droplets. We establish a model considering a pure water vapour atmosphere, and then expand this model to account for the presence of an atmospheric gas such as air. We model colloidal particle-particle interactions and interactions between colloid and electrolyte using DLVO Theory and reaction kinetics, then incorporate these interactions into an expression for net interaction energy of a single particle with all other particles within the droplet. We account for the flow of material due to diffusion, advection, and interaction between species, and expand the pure liquid droplet models to account for the presence of these species. In addition, the process of colloidal agglomeration is modelled. To obtain solutions for our models, we develop a numerical algorithm based on the Control Volume method. To promote numerical stability, we formulate a new method of convergence acceleration. The results of a MATLAB™ code developed from this algorithm are compared with experimental data collected for the purposes of validation, and further analysis is done on the sensitivity of the solution to various controlling parameters.
Resumo:
In the medical and healthcare arena, patients‟ data is not just their own personal history but also a valuable large dataset for finding solutions for diseases. While electronic medical records are becoming popular and are used in healthcare work places like hospitals, as well as insurance companies, and by major stakeholders such as physicians and their patients, the accessibility of such information should be dealt with in a way that preserves privacy and security. Thus, finding the best way to keep the data secure has become an important issue in the area of database security. Sensitive medical data should be encrypted in databases. There are many encryption/ decryption techniques and algorithms with regard to preserving privacy and security. Currently their performance is an important factor while the medical data is being managed in databases. Another important factor is that the stakeholders should decide more cost-effective ways to reduce the total cost of ownership. As an alternative, DAS (Data as Service) is a popular outsourcing model to satisfy the cost-effectiveness but it takes a consideration that the encryption/ decryption modules needs to be handled by trustworthy stakeholders. This research project is focusing on the query response times in a DAS model (AES-DAS) and analyses the comparison between the outsourcing model and the in-house model which incorporates Microsoft built-in encryption scheme in a SQL Server. This research project includes building a prototype of medical database schemas. There are 2 types of simulations to carry out the project. The first stage includes 6 databases in order to carry out simulations to measure the performance between plain-text, Microsoft built-in encryption and AES-DAS (Data as Service). Particularly, the AES-DAS incorporates implementations of symmetric key encryption such as AES (Advanced Encryption Standard) and a Bucket indexing processor using Bloom filter. The results are categorised such as character type, numeric type, range queries, range queries using Bucket Index and aggregate queries. The second stage takes the scalability test from 5K to 2560K records. The main result of these simulations is that particularly as an outsourcing model, AES-DAS using the Bucket index shows around 3.32 times faster than a normal AES-DAS under the 70 partitions and 10K record-sized databases. Retrieving Numeric typed data takes shorter time than Character typed data in AES-DAS. The aggregation query response time in AES-DAS is not as consistent as that in MS built-in encryption scheme. The scalability test shows that the DBMS reaches in a certain threshold; the query response time becomes rapidly slower. However, there is more to investigate in order to bring about other outcomes and to construct a secured EMR (Electronic Medical Record) more efficiently from these simulations.
Resumo:
Distraction whilst driving on an approach to a signalized intersection is particularly dangerous, as potential vehicular conflicts and resulting angle collisions tend to be severe. This study examines the decisions of distracted drivers during the onset of amber lights. Driving simulator data were obtained from a sample of 58 drivers under baseline and handheld mobile phone conditions at the University of IOWA - National Advanced Driving Simulator. Explanatory variables include age, gender, cell phone use, distance to stop-line, and speed. An iterative combination of decision tree and logistic regression analyses are employed to identify main effects, non-linearities, and interactions effects. Results show that novice (16-17 years) and younger (18-25 years) drivers’ had heightened amber light running risk while distracted by cell phone, and speed and distance thresholds yielded significant interaction effects. Driver experience captured by age has a multiplicative effect with distraction, making the combined effect of being inexperienced and distracted particularly risky. Solutions are needed to combat the use of mobile phones whilst driving.
Resumo:
Environmental manipulation removes students from their everyday worlds to unfamiliar worlds, to facil- itate learning. This article reports that this strategy was effective when applied in a university design unit, using the tactic of immersion in the Second Life online virtual environment. The objective was for teams of stu- dents each to design a series of modules for an orbiting space station using supplied data. The changed and futuristic environment led the students to an important but previously unconsidered design decision which they were able to address in novel ways because of, rather than in spite of, the Second Life immersion.
Resumo:
Fractional order dynamics in physics, particularly when applied to diffusion, leads to an extension of the concept of Brown-ian motion through a generalization of the Gaussian probability function to what is termed anomalous diffusion. As MRI is applied with increasing temporal and spatial resolution, the spin dynamics are being examined more closely; such examinations extend our knowledge of biological materials through a detailed analysis of relaxation time distribution and water diffusion heterogeneity. Here the dynamic models become more complex as they attempt to correlate new data with a multiplicity of tissue compartments where processes are often anisotropic. Anomalous diffusion in the human brain using fractional order calculus has been investigated. Recently, a new diffusion model was proposed by solving the Bloch-Torrey equation using fractional order calculus with respect to time and space (see R.L. Magin et al., J. Magnetic Resonance, 190 (2008) 255-270). However effective numerical methods and supporting error analyses for the fractional Bloch-Torrey equation are still limited. In this paper, the space and time fractional Bloch-Torrey equation (ST-FBTE) is considered. The time and space derivatives in the ST-FBTE are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. Firstly, we derive an analytical solution for the ST-FBTE with initial and boundary conditions on a finite domain. Secondly, we propose an implicit numerical method (INM) for the ST-FBTE, and the stability and convergence of the INM are investigated. We prove that the implicit numerical method for the ST-FBTE is unconditionally stable and convergent. Finally, we present some numerical results that support our theoretical analysis.
Resumo:
Optimising the container transfer schedule at the multimodal terminals is known to be NP-hard, which implies that the best solution becomes computationally infeasible as problem sizes increase. Genetic Algorithm (GA) techniques are used to reduce container handling/transfer times and ships' time at the port by speeding up handling operations. The GA is chosen due to the relatively good results that have been reported even with the simplest GA implementations to obtain near-optimal solutions in reasonable time. Also discussed, is the application of the model to assess the consequences of increased scheduled throughput time as well as different strategies such as the alternative plant layouts, storage policies and number of yard machines. A real data set used for the solution and subsequent sensitivity analysis is applied to the alternative plant layouts, storage policies and number of yard machines.
Resumo:
The Queensland University of Technology (QUT) in Brisbane, Australia, is involved in a number of projects funded by the Australian National Data Service (ANDS). Currently, QUT is working on a project (Metadata Stores Project) that uses open source VIVO software to aid in the storage and management of metadata relating to data sets created/managed by the QUT research community. The registry (called QUT Research Data Finder) will support the sharing and reuse of research datasets, within and external to QUT. QUT uses VIVO for both the display and the editing of research metadata.
Resumo:
Buildings are key mediators between human activity and the environment around them, but details of energy usage and activity in buildings is often poorly communicated and understood. ECOS is an Eco-Visualization project that aims to contextualize the energy generation and consumption of a green building in a variety of different climates. The ECOS project is being developed for a large public interactive space installed in the new Science and Engineering Centre of the Queensland University of Technology that is dedicated to delivering interactive science education content to the public. This paper focuses on how design can develop ICT solutions from large data sets to create meaningful engagement with environmental data.
Resumo:
Buildings are key mediators between human activity and the environment around them, but details of energy usage and activity in buildings is often poorly communicated and understood. ECOS is an Eco-Visualization project that aims to contextualize the energy generation and consumption of a green building in a variety of different climates. The ECOS project is being developed for a large public interactive space installed in the new Science and Engineering Centre of the Queensland University of Technology that is dedicated to delivering interactive science education content to the public. This paper focuses on how design can develop ICT solutions from large data sets to create meaningful engagement with environmental data.
Resumo:
Increasing use of computerized systems in our daily lives creates new adversarial opportunities for which complex mechanisms are exploited to mend the rapid development of new attacks. Behavioral Biometrics appear as one of the promising response to these attacks. But it is a relatively new research area, specific frameworks for evaluation and development of behavioral biometrics solutions could not be found yet. In this paper we present a conception of a generic framework and runtime environment which will enable researchers to develop, evaluate and compare their behavioral biometrics solutions with repeatable experiments under the same conditions with the same data.
Resumo:
This book develops tools and techniques that will help urban residents gain access to urban computing. Metaphorically speaking, it is taking computing to the street by giving the general public – rather than just researchers and professionals – the power to leverage available city infrastructure and create solutions tailored to their individual needs. It brings together five chapters that are based on presentations given at the Street Computing Workshop held on 24 November 2009 in Melbourne in conjunction with the Australian Computer-Human Interaction Conference (OZCHI 2009). This book focuses on applying urban informatics, urban and community sensing and open application programming interfaces (APIs) to the public space through the delivery of online services, on demand and in real time. It then offers a case study of how the city of Singapore has harnessed the potential of an online infrastructure so that residents and visitors can access services electronically. This book was published as a special issue of the Journal of Urban Technology, 19(2), 2012.